Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据。已有的Hive系统尽管也提供了SQL语义,但因为Hive底层运行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性。相比之下,Impala的最大特点也是最大卖点就是它的高速。Impala 为存储在 HDFS 和 HBase 中的数据提供了一个实时 SQL 查询接口。
Impala长处
下图来自zdnet,描写叙述了Impala的一些长处:
从上图中看出基本的长处:SQL友好,比Hive快,支持多种存储引擎文件格式,接口丰富(ODBC,JDBC,Client),开源,部署easy。
Impala架构
Impala解决方式包括以下几大部分:
Clients:包含 Hue, ODBC clients, JDBC clients, and the Impala Shell
Hive Metastore:存放结构定义的元数据,当你创建、删除、改动表结构,或者载入数据到表中时,会自己主动的通知Impala节点。
Cloudera Impala:运行在数据节点上,分析、调度、运行查询任务,每一个Impala实例都能够接收、调度来自client的查询,这些查询分发到Impala节点进行查询,Impala节点相当于工作进程,运行查询,并将结果返回。
HBase and HDFS:存储供Impala查询的数据。
下图描写叙述了Impala的架构:
上图中,黄色部分为Impala组件。Impala使用了Hive的SQL接口(包括SELECT、 INSERT、Join等操作),但眼下仅仅实现了Hive的SQL语义的子集(比如尚未对UDF提供支持),表的元数据信息存储在Hive的 Metastore中。StateStore是Impala的一个子服务,用来监控集群中各个节点的健康状况,提供节点注冊、错误检測等功能。 Impala在每一个节点执行了一个后台服务Impalad,Impalad用来响应外部请求,并完毕实际的查询处理。Impalad主要包括Query Planner、Query Coordinator和Query Exec Engine三个模块。QueryPalnner接收来自SQL APP和ODBC的查询,然后将查询转换为很多子查询,Query Coordinator将这些子查询分发到各个节点上,由各个节点上的Query Exec Engine负责子查询的运行,最后返回子查询的结果,这些中间结果经过聚集之后终于返回给用户。
Impala进程
从进程的角度看分为例如以下的三类进程:
The Impala Daemon
是Impala的核心进程,进程名叫做:impalad,执行在全部的数据节点上,能够读写数据,并接收client的查询请求,并行执行来自集群中其它节点的查询请求,将中间结果返回给调度节点。调用节点将结果返回给client。
The Impala Statestore
状态管理进程,定时检查The Impala Daemon的健康状况,协调各个执行impalad的实例之间的信息关系,Impala正是通过这些信息去定位查询请求所要的数据,进程名叫做statestored,在集群中仅仅须要启动一个这种进程,假设Impala节点因为物理原因、网络原因、软件原因或者其它原因而下线,Statestore会通知其它节点,避免查询任务分发到不可用的节点上。
The Impala Catalog Service
元数据管理服务,进程名叫做 catalogd,用于广播Impala中DDL、DML语句导致的元数据变化到全部Impala节点,因此新建表、新加载数据、等等操作对于随意节点提交的查询都可见(Impala 1.2之前,你必须在每一个节点上运行 REFRESH 或 INVALIDATE METADATA 语句以同步元数据的更新。如今仅仅须要在Hive中运行DDL、DML语句之后再运行这些语句)。
在搭建的CDH5环境上找到了这些进程:
hostname | 进程名称 |
---|---|
h1.worker.com | statestored、catalogd |
h2.worker.com | impalad |
h3.worker.com | impalad |
h4.worker.com | impalad |
[root@h1 ~]# hostname h1.worker.com [root@h1 ~]# ps -ef | grep impala impala 14048 7910 0 04:13 ? 00:00:30 /opt/cloudera/parcels/CDH-5.0.2-1.cdh5.0.2.p0.13/lib/impala/sbin-retail/catalogd --flagfile=/var/run/cloudera-scm-agent/process/57-impala-CATALOGSERVER/impala-conf/catalogserver_flags impala 14070 7910 0 04:13 ? 00:03:01 /opt/cloudera/parcels/CDH-5.0.2-1.cdh5.0.2.p0.13/lib/impala/sbin-retail/statestored --flagfile=/var/run/cloudera-scm-agent/process/61-impala-STATESTORE/impala-conf/state_store_flags root 48029 31543 0 10:13 pts/0 00:00:00 grep impala [root@h1 ~]#
[root@h2 ~]# hostname h2.worker.com [root@h2 ~]# ps -ef | grep impala impala 13919 4405 0 04:13 ? 00:01:12 /opt/cloudera/parcels/CDH-5.0.2-1.cdh5.0.2.p0.13/lib/impala/sbin-retail/impalad --flagfile=/var/run/cloudera-scm-agent/process/58-impala-IMPALAD/impala-conf/impalad_flags root 24212 18173 0 10:16 pts/0 00:00:00 grep impala
Impala快的原因
从网上找了一段Impala快的原因,主要有下面几方面的原因。
- Impala不须要把中间结果写入磁盘,省掉了大量的I/O开销。
- 省掉了MapReduce作业启动的开销。MapReduce启动task的速度非常慢(默认每一个心跳间隔是3秒钟),Impala直接通过对应的服务进程来进行作业调度,速度快了非常多。
- Impala全然抛弃了MapReduce这个不太适合做SQL查询的范式,而是像Dremel一样借鉴了MPP并行数据库的思想另起炉灶,因此可做很多其它的查询优化,从而省掉不必要的shuffle、sort等开销。
- 通过使用LLVM来统一编译执行时代码,避免了为支持通用编译而带来的不必要开销。
- 用C++实现,做了非常多有针对性的硬件优化,比如使用SSE指令。
- 使用了支持Data locality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,降低了网络开销。
Impala源码
https://github.com/cloudera/impala
后面重点分析下Impala的源码。个人感觉和分布式数据库查询引擎的架构比較类型。
參考文档
Cloudera aims to bring real-time queries to Hadoop, big data
原创作品,转载请注明出处 http://blog.csdn.net/yangzhaohui168/article/details/34185579