• [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)


    Wormholes
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 29971   Accepted: 10844

    Description

    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

    To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

    Input

    Line 1: A single integer, FF farm descriptions follow. 
    Line 1 of each farm: Three space-separated integers respectively: NM, and W 
    Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
    Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

    Output

    Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

    Sample Input

    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8

    Sample Output

    NO
    YES

    Hint

    For farm 1, FJ cannot travel back in time. 
    For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

    Source


    解题思路:

    这题什么意思读了半天也没弄懂。。在POJ上做题头一大难关就是读题意。。。

    农民有N块地,每块地看做一个节点,有m条普通的路(双向),连接着两个节点,从一端走到还有一端须要w时间(权值),还有wh条特殊的单向路,也就是题意中的虫洞,虫洞也连接着两个节点,但虫洞是单向的,从起点走到终点须要w时间,但这个时间是负的,也就是题意中所说的时光倒流,比方 一个虫洞连接着s -> e,在s处如果时间为6,走虫洞时间为4,那么走过去时光倒流,走到e时时间就变为了2 (6 -4,也就是虫洞这条路的权值为 -4 ) ,好奇妙。。。。问有没有这样一种情况,就是第二次走到某个节点的时间比第一次走到该节点所用的时间短(题中的Perhaps he will be able to meet himself,时光倒流的作用)。如果存在这样的情况,那么以某节点为起点和终点一定存在着一个回路,这个回路的权值是负的,这样第二次所用的时间一定比第一次少。

    bellman-ford求最短路径算法中的第三步就是推断一个图(有向图,或无向图)中是否存在负权回路。

    bellman-ford算法參考:http://blog.csdn.net/niushuai666/article/details/6791765


    代码:

    #include <iostream>
    #include <iostream>
    using namespace std;
    const int inf=10010;
    const int maxn=6000;
    
    struct Edge//边结构体
    {
        int s,e,w;
    }edge[maxn];
    
    int dis[maxn];//到达各顶点的距离
    int nodeNum,edgeNum;//节点个数,边个数
    
    bool bellman_ford()
    {
        for(int i=0;i<=nodeNum;i++)
            dis[i]=inf;//初始化
        bool ok;//推断是否发生了松弛
        for(int i=1;i<=nodeNum-1;i++)
        {
            ok=0;
            for(int j=1;j<=edgeNum;j++)
            {
                if(dis[edge[j].s]+edge[j].w<dis[edge[j].e])
                {
                    dis[edge[j].e]=dis[edge[j].s]+edge[j].w;
                    ok=1;
                }
            }
            if(!ok)//没有发生松弛,及时退出
                break;
        }
        for(int i=1;i<=edgeNum;i++)//寻找负权回路
            if(dis[edge[i].s]+edge[i].w<dis[edge[i].e])
                return true;//存在负权回路
        return false;
    }
    
    int main()
    {
        int t;cin>>t;
        int n,m,wh;
        while(t--)
        {
            cin>>n>>m>>wh;//n为节点,m为双向边,wh为单向边
            nodeNum=n;
            edgeNum=m*2+wh;
            int cnt=1;
            int s,e,w;//起点,终点,权值
            for(int i=1;i<=m;i++)
            {
                cin>>s>>e>>w;
                edge[cnt].s=s;
                edge[cnt].e=e;
                edge[cnt++].w=w;
                edge[cnt].s=e;
                edge[cnt].e=s;
                edge[cnt++].w=w;
            }
            for(int i=1;i<=wh;i++)
            {
                cin>>s>>e>>w;
                edge[cnt].s=s;
                edge[cnt].e=e;
                edge[cnt++].w=-w;//注意是负权
            }
            if(bellman_ford())//存在负权回路
                cout<<"YES"<<endl;
            else
                cout<<"NO"<<endl;
        }
        return 0;
    }
    






  • 相关阅读:
    实习记录2
    实习记录1
    silverlight中 Storyboard(动画)的使用,实现球的上下循环移动,左右移动,及旋转功能
    实习记录7(正则表达式)
    SilverLight 控件ListBox中的SelectionChanged事件
    OpenStack collectd的从零安装服务端
    OpenStack 的防火墙规则流程
    OpenStack 的NAT解决办法
    OpenStack 界面开发中的排序问题
    OpenStack 界面开发中response.body的中文编码问题
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/3961235.html
Copyright © 2020-2023  润新知