看见别人写出来美丽有用的代码,最终下定决心好好学习算法,在这里记录下自己学习的成果。
前两天看到数组的全排列,于是自己照着别人的想法实现了一下,感觉自己理解了,有点小高兴,记载一下。
/* * 数组的全排列*/ public class myAllSort { public static void sort(int[] number,int start,int end){ int temp; // 假设发现数组对掉元素到了最后一个,那么就输出,证明已经符合要求 if(start==end) { print(number); } // 依次将数组的第一个元素和后面的元素一一对调,然后第一次对掉之后递归, // 将数组的第二个元素和他之后的元素对掉,最后一次进行 /* * 1 2 3 4-->1 2 3 4-->1 2 3 4 * 1 2 4 3 * 1 3 2 4-->1 3 2 4 * 1 3 4 2 * 1 4 3 2-->1 4 3 2 * 1 4 2 3 * 2 1 3 4 * 3 2 1 4 * 4 2 3 1 * */ for(int i=start;i<end;i++){ temp = number[start]; number[start] = number[i]; number[i] = temp; sort(number,start+1,end); // print(number); //输出排序的全过程 // 将对掉之后的数组便会原来的顺序,以便下次 temp = number[start]; number[start] = number[i]; number[i] = temp; // } } public static void print(int[] number){ for(int i=0;i<number.length;i++) { System.out.print(number[i]+"--"); } System.out.println(); } public static void main(String[] args) { int[] number = {1,2,3,4}; sort(number,0,number.length); } }另一种数组的选择排序方法,感觉这个思想对我非常实用,详细的出处给忘了。
import java.util.ArrayList; import java.util.Arrays; import java.util.List; /* * 从属注重选择几个数字进行排列 * 比如:五个选三个的全排列 * 算法原理:在数组中选取一个数字先存储到集合中,然后再依次选取其它数字, * */ public class ChooseServalFromNumber { public static final int NUM = 4; public static void main(String[] args) { Object[] obj = new String[]{"1","2","3","4"}; List<Object> list = Arrays.asList(obj); chooseNumberSort(list,new ArrayList<Object>()); } public static void chooseNumberSort(List<Object> list,List<Object> target){ // 假设目标集合中的数字达到了我们需求的个数就输出 // if(target.size()==NUM) // System.out.println(target+"--"); if(target.size()==4) System.out.println(list+" --> "+target+"--输出"); // else // System.out.println(list+" --> "+target); for(int i=0;i<list.size();i++){ List<Object> newList = new ArrayList<Object>(list); List<Object> newTarget = new ArrayList<Object>(target); newTarget.add(newList.get(i)); newList.remove(i); System.out.println(list+" --> "+target); chooseNumberSort(newList,newTarget); } } } /* 输出结果: [1, 2, 3, 4] --> [] [2, 3, 4] --> [1] [3, 4] --> [1, 2] [4] --> [1, 2, 3] [] --> [1, 2, 3, 4]--输出 [3, 4] --> [1, 2] [3] --> [1, 2, 4] [] --> [1, 2, 4, 3]--输出 [2, 3, 4] --> [1] [2, 4] --> [1, 3] [4] --> [1, 3, 2] [] --> [1, 3, 2, 4]--输出 [2, 4] --> [1, 3] [2] --> [1, 3, 4] [] --> [1, 3, 4, 2]--输出 [2, 3, 4] --> [1] [2, 3] --> [1, 4] [3] --> [1, 4, 2] [] --> [1, 4, 2, 3]--输出 [2, 3] --> [1, 4] [2] --> [1, 4, 3] [] --> [1, 4, 3, 2]--输出 [1, 2, 3, 4] --> [] [1, 3, 4] --> [2] [3, 4] --> [2, 1] [4] --> [2, 1, 3] [] --> [2, 1, 3, 4]--输出 [3, 4] --> [2, 1] [3] --> [2, 1, 4] [] --> [2, 1, 4, 3]--输出 [1, 3, 4] --> [2] [1, 4] --> [2, 3] [4] --> [2, 3, 1] [] --> [2, 3, 1, 4]--输出 [1, 4] --> [2, 3] [1] --> [2, 3, 4] [] --> [2, 3, 4, 1]--输出 [1, 3, 4] --> [2] [1, 3] --> [2, 4] [3] --> [2, 4, 1] [] --> [2, 4, 1, 3]--输出 [1, 3] --> [2, 4] [1] --> [2, 4, 3] [] --> [2, 4, 3, 1]--输出 [1, 2, 3, 4] --> [] [1, 2, 4] --> [3] [2, 4] --> [3, 1] [4] --> [3, 1, 2] [] --> [3, 1, 2, 4]--输出 [2, 4] --> [3, 1] [2] --> [3, 1, 4] [] --> [3, 1, 4, 2]--输出 [1, 2, 4] --> [3] [1, 4] --> [3, 2] [4] --> [3, 2, 1] [] --> [3, 2, 1, 4]--输出 [1, 4] --> [3, 2] [1] --> [3, 2, 4] [] --> [3, 2, 4, 1]--输出 [1, 2, 4] --> [3] [1, 2] --> [3, 4] [2] --> [3, 4, 1] [] --> [3, 4, 1, 2]--输出 [1, 2] --> [3, 4] [1] --> [3, 4, 2] [] --> [3, 4, 2, 1]--输出 [1, 2, 3, 4] --> [] [1, 2, 3] --> [4] [2, 3] --> [4, 1] [3] --> [4, 1, 2] [] --> [4, 1, 2, 3]--输出 [2, 3] --> [4, 1] [2] --> [4, 1, 3] [] --> [4, 1, 3, 2]--输出 [1, 2, 3] --> [4] [1, 3] --> [4, 2] [3] --> [4, 2, 1] [] --> [4, 2, 1, 3]--输出 [1, 3] --> [4, 2] [1] --> [4, 2, 3] [] --> [4, 2, 3, 1]--输出 [1, 2, 3] --> [4] [1, 2] --> [4, 3] [2] --> [4, 3, 1] [] --> [4, 3, 1, 2]--输出 [1, 2] --> [4, 3] [1] --> [4, 3, 2] [] --> [4, 3, 2, 1]--输出 */