• Java OCR tesseract 图像智能字符识别技术 Java代码实现


    接着上一篇OCR所说的。上一篇给大家介绍了tesseract 在命令行的简单使用方法,当然了要继承到我们的程序中,还是须要代码实现的。以下给大家分享下java实现的样例。


    拿代码扫描上面的图片,然后输出结果。

    主要思想就是利用Java调用系统任务。

    以下是核心代码:

    package com.zhy.test;
    
    import java.io.BufferedReader;
    
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.InputStreamReader;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.jdesktop.swingx.util.OS;
    
    public class OCRHelper
    {
    	private final String LANG_OPTION = "-l";
    	private final String EOL = System.getProperty("line.separator");
    	/**
    	 * 文件位置我防止在。项目同一路径
    	 */
    	private String tessPath = new File("tesseract").getAbsolutePath();
    
    	/**
    	 * @param imageFile
    	 *            传入的图像文件
    	 * @param imageFormat
    	 *            传入的图像格式
    	 * @return 识别后的字符串
    	 */
    	public String recognizeText(File imageFile) throws Exception
    	{
    		/**
    		 * 设置输出文件的保存的文件文件夹
    		 */
    		File outputFile = new File(imageFile.getParentFile(), "output");
    
    		StringBuffer strB = new StringBuffer();
    		List<String> cmd = new ArrayList<String>();
    		if (OS.isWindowsXP())
    		{
    			cmd.add(tessPath + "\tesseract");
    		} else if (OS.isLinux())
    		{
    			cmd.add("tesseract");
    		} else
    		{
    			cmd.add(tessPath + "\tesseract");
    		}
    		cmd.add("");
    		cmd.add(outputFile.getName());
    		cmd.add(LANG_OPTION);
    //		cmd.add("chi_sim");
    		cmd.add("eng");
    
    		ProcessBuilder pb = new ProcessBuilder();
    		/**
    		 *Sets this process builder's working directory.
    		 */
    		pb.directory(imageFile.getParentFile());
    		cmd.set(1, imageFile.getName());
    		pb.command(cmd);
    		pb.redirectErrorStream(true);
    		Process process = pb.start();
    		// tesseract.exe 1.jpg 1 -l chi_sim
    		// Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim");
    		/**
    		 * the exit value of the process. By convention, 0 indicates normal
    		 * termination.
    		 */
    //		System.out.println(cmd.toString());
    		int w = process.waitFor();
    		if (w == 0)// 0代表正常退出
    		{
    			BufferedReader in = new BufferedReader(new InputStreamReader(
    					new FileInputStream(outputFile.getAbsolutePath() + ".txt"),
    					"UTF-8"));
    			String str;
    
    			while ((str = in.readLine()) != null)
    			{
    				strB.append(str).append(EOL);
    			}
    			in.close();
    		} else
    		{
    			String msg;
    			switch (w)
    			{
    			case 1:
    				msg = "Errors accessing files. There may be spaces in your image's filename.";
    				break;
    			case 29:
    				msg = "Cannot recognize the image or its selected region.";
    				break;
    			case 31:
    				msg = "Unsupported image format.";
    				break;
    			default:
    				msg = "Errors occurred.";
    			}
    			throw new RuntimeException(msg);
    		}
    		new File(outputFile.getAbsolutePath() + ".txt").delete();
    		return strB.toString().replaceAll("\s*", "");
    	}
    }
    
    代码非常easy,中间那部分ProcessBuilder事实上就相似Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim"),大家不习惯的能够使用Runtime。

    測试代码:

    package com.zhy.test;
    
    import java.io.File;
    
    public class Test
    {
    	public static void main(String[] args)
    	{
    		try
    		{
    			
    			File testDataDir = new File("testdata");
    			System.out.println(testDataDir.listFiles().length);
    			int i = 0 ; 
    			for(File file :testDataDir.listFiles())
    			{
    				i++ ;
    				String recognizeText = new OCRHelper().recognizeText(file);
    				System.out.print(recognizeText+"	");
    
    				if( i % 5  == 0 )
    				{
    					System.out.println();
    				}
    			}
    			
    		} catch (Exception e)
    		{
    			e.printStackTrace();
    		}
    
    	}
    }
    

    输出结果:


    对照第一张图片,是不是非常完美~哈哈 ,当然了假设你仅仅须要实现验证码的读写。那么上面就足够了。以下继续普及图像处理的知识。



    -------------------------------------------------------------------我的切割线--------------------------------------------------------------------

    当然了。有时候图片被扭曲或者模糊的非常厉害。非常不easy识别,所以以下我给大家介绍一个去噪的辅助类,绝对碉堡了,先看下效果图。


    来张特写:


    一个类,不依赖不论什么jar,把图像中的干扰线消灭了,是不是非常给力,然后再拿这种图片去识别,会不会效果更好呢,嘿嘿。大家自己实验~

    代码:

    package com.zhy.test;
    
    import java.awt.Color;
    import java.awt.image.BufferedImage;
    import java.io.File;
    import java.io.IOException;
    
    import javax.imageio.ImageIO;
    
    public class ClearImageHelper
    {
    
    	public static void main(String[] args) throws IOException
    	{
    
    		
    		File testDataDir = new File("testdata");
    		final String destDir = testDataDir.getAbsolutePath()+"/tmp";
    		for (File file : testDataDir.listFiles())
    		{
    			cleanImage(file, destDir);
    		}
    
    	}
    
    	/**
    	 * 
    	 * @param sfile
    	 *            须要去噪的图像
    	 * @param destDir
    	 *            去噪后的图像保存地址
    	 * @throws IOException
    	 */
    	public static void cleanImage(File sfile, String destDir)
    			throws IOException
    	{
    		File destF = new File(destDir);
    		if (!destF.exists())
    		{
    			destF.mkdirs();
    		}
    
    		BufferedImage bufferedImage = ImageIO.read(sfile);
    		int h = bufferedImage.getHeight();
    		int w = bufferedImage.getWidth();
    
    		// 灰度化
    		int[][] gray = new int[w][h];
    		for (int x = 0; x < w; x++)
    		{
    			for (int y = 0; y < h; y++)
    			{
    				int argb = bufferedImage.getRGB(x, y);
    				// 图像加亮(调整亮度识别率非常高)
    				int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);
    				int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);
    				int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);
    				if (r >= 255)
    				{
    					r = 255;
    				}
    				if (g >= 255)
    				{
    					g = 255;
    				}
    				if (b >= 255)
    				{
    					b = 255;
    				}
    				gray[x][y] = (int) Math
    						.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)
    								* 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);
    			}
    		}
    
    		// 二值化
    		int threshold = ostu(gray, w, h);
    		BufferedImage binaryBufferedImage = new BufferedImage(w, h,
    				BufferedImage.TYPE_BYTE_BINARY);
    		for (int x = 0; x < w; x++)
    		{
    			for (int y = 0; y < h; y++)
    			{
    				if (gray[x][y] > threshold)
    				{
    					gray[x][y] |= 0x00FFFF;
    				} else
    				{
    					gray[x][y] &= 0xFF0000;
    				}
    				binaryBufferedImage.setRGB(x, y, gray[x][y]);
    			}
    		}
    
    		// 矩阵打印
    		for (int y = 0; y < h; y++)
    		{
    			for (int x = 0; x < w; x++)
    			{
    				if (isBlack(binaryBufferedImage.getRGB(x, y)))
    				{
    					System.out.print("*");
    				} else
    				{
    					System.out.print(" ");
    				}
    			}
    			System.out.println();
    		}
    
    		ImageIO.write(binaryBufferedImage, "jpg", new File(destDir, sfile
    				.getName()));
    	}
    
    	public static boolean isBlack(int colorInt)
    	{
    		Color color = new Color(colorInt);
    		if (color.getRed() + color.getGreen() + color.getBlue() <= 300)
    		{
    			return true;
    		}
    		return false;
    	}
    
    	public static boolean isWhite(int colorInt)
    	{
    		Color color = new Color(colorInt);
    		if (color.getRed() + color.getGreen() + color.getBlue() > 300)
    		{
    			return true;
    		}
    		return false;
    	}
    
    	public static int isBlackOrWhite(int colorInt)
    	{
    		if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)
    		{
    			return 1;
    		}
    		return 0;
    	}
    
    	public static int getColorBright(int colorInt)
    	{
    		Color color = new Color(colorInt);
    		return color.getRed() + color.getGreen() + color.getBlue();
    	}
    
    	public static int ostu(int[][] gray, int w, int h)
    	{
    		int[] histData = new int[w * h];
    		// Calculate histogram
    		for (int x = 0; x < w; x++)
    		{
    			for (int y = 0; y < h; y++)
    			{
    				int red = 0xFF & gray[x][y];
    				histData[red]++;
    			}
    		}
    
    		// Total number of pixels
    		int total = w * h;
    
    		float sum = 0;
    		for (int t = 0; t < 256; t++)
    			sum += t * histData[t];
    
    		float sumB = 0;
    		int wB = 0;
    		int wF = 0;
    
    		float varMax = 0;
    		int threshold = 0;
    
    		for (int t = 0; t < 256; t++)
    		{
    			wB += histData[t]; // Weight Background
    			if (wB == 0)
    				continue;
    
    			wF = total - wB; // Weight Foreground
    			if (wF == 0)
    				break;
    
    			sumB += (float) (t * histData[t]);
    
    			float mB = sumB / wB; // Mean Background
    			float mF = (sum - sumB) / wF; // Mean Foreground
    
    			// Calculate Between Class Variance
    			float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);
    
    			// Check if new maximum found
    			if (varBetween > varMax)
    			{
    				varMax = varBetween;
    				threshold = t;
    			}
    		}
    
    		return threshold;
    	}
    }


    好了,就到这里。假设这篇文章对你实用,赞一个吧~





  • 相关阅读:
    empty() 为true
    浅谈Linux cp命令
    Centos7 出现Welcome to emergency mode!【紧急模式】
    Linux系统管理命令-systemctl 和 sshd 服务
    Linux 配置 history 命令显示操作时间、用户和登录 IP
    SHELL 中条件语句的运用 if for 条件测试语句
    CentOS 7 使用 HP 打印机
    Xmanager 5远程连接CentOS7图形化界面
    chmod命令用法详解-chmod修改目录权限
    centos crontab用法详解 定时任务的设置
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/7039805.html
Copyright © 2020-2023  润新知