• java位运算应用


    位移动运算符:


    <<表示左移, 左移一位表示原来的值乘2.


    比如:3 <<2(3为int型) 
    1)把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011, 
    2)把该数字高位(左側)的两个零移出。其它的数字都朝左平移2位, 
    3)在低位(右側)的两个空位补零。则得到的终于结果是0000 0000 0000 0000 0000 0000 0000 1100, 
    转换为十进制是12。


    同理,>>表示右移. 右移一位表示除2.


     


    位运算:


    位运算符包含: 与(&)、非(~)、或(|)、异或(^)


      &:当两边操作数的位同一时候为1时,结果为1,否则为0。如1100&1010=1000   


          | :当两边操作数的位有一边为1时,结果为1。否则为0。如1100|1010=1110   


          ~:0变1,1变0   


          ^:两边的位不同一时候。结果为1。否则为0.如1100^1010=0110


    位运算与位移动执行符的一个场景:


        HashMap的功能是通过“键(key)”可以高速的找到“值”。以下我们分析下HashMap存数据的基本流程: 
        1、 当调用put(key,value)时,首先获取key的hashcode,int hash = key.hashCode(); 
        2、 再把hash通过一下运算得到一个int h. 
    hash ^= (hash >>> 20) ^ (hash >>> 12); 
    int h = hash ^ (hash >>> 7) ^ (hash >>> 4); 
    为什么要经过这种运算呢?这就是HashMap的高明之处。先看个样例。一个十进制数32768(二进制1000 0000 0000 0000),经过上述公式运算之后的结果是35080(二进制1000 1001 0000 1000)。看出来了吗?也许这样还看不出什么,再举个数字61440(二进制1111 0000 0000 0000)。运算结果是65263(二进制1111 1110 1110 1111)。如今应该非常明显了,它的目的是让“1”变的均匀一点。散列的本意就是要尽量均匀分布。


      3、 得到h之后。把h与HashMap的承载量(HashMap的默认承载量length是16,能够自己主动变长。在构造HashMap的时候也能够指定一个长 度。这个承载量就是上图所描写叙述的数组的长度。)进行逻辑与运算,即 h & (length-1),这样得到的结果就是一个比length小的正数。我们把这个值叫做index。事实上这个index就是索引将要插入的值在数组中的 位置。

    第2步那个算法的意义就是希望能够得出均匀的index。这是HashTable的改进,HashTable中的算法仅仅是把key的 hashcode与length相除取余。即hash % length。这样有可能会造成index分布不均匀。

    另一点须要说明,HashMap的键能够为null,它的值是放在数组的第一个位置。




    4、 我们用table[index]表示已经找到的元素须要存储的位置。先推断该位置上有没有元素(这个元素是HashMap内部定义的一个类Entity, 基本结构它包括三个类,key,value和指向下一个Entity的next),没有的话就创建一个Entity<K,V>对象,在 table[index]位置上插入。这样插入结束;假设有的话,通过链表的遍历方式去逐个遍历,看看有没有已经存在的key,有的话用新的value替 换老的value。假设没有。则在table[index]插入该Entity,把原来在table[index]位置上的Entity赋值给新的 Entity的next。这样插入结束。


    以下解说一下原码->反码->补码之间的相互关系


    [-3]反=[10000011]反=11111100 
                 原码            反码
    负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。

     
    [-3]补=[10000011]补=11111101 
                 原码          补码


    也就是说原码转换成补码是先原码  反码 最后+1成补码。位运算都是补码运算的,所以位运算后要再取反+1才得到真正的原码。


    应用举例 
    (1) 推断int型变量a是奇数还是偶数            
    a&1  = 0 偶数 
          a&1 =  1 奇数 
    (2) 取int型变量a的第k位 (k=0,1,2……sizeof(int))。即a>>k&1 
    (3) 将int型变量a的第k位清0。即a=a&~(1 < <k) 
    (4) 将int型变量a的第k位置1, 即a=a ¦(1 < <k) 
    (5) int型变量循环左移k次,即a=a < <k ¦a>>16-k  (设sizeof(int)=16) 
    (6) int型变量a循环右移k次,即a=a>>k ¦a < <16-k  (设sizeof(int)=16) 
    (7)整数的平均值 
    对于两个整数x,y,假设用 (x+y)/2 求平均值。会产生溢出。由于 x+y 可能会大于INT_MAX,可是我们知道它们的平均值是肯定不会溢出的。我们用例如以下算法: 
    int average(int x, int y)  //返回X,Y 的平均值 
    {    
        return (x&y)+((x^y)>>1); 

    (8)推断一个整数是不是2的幂,对于一个数 x >= 0,推断他是不是2的幂 
    boolean power2(int x) 

        return ((x&(x-1))==0)&&(x!=0)。 

    (9)不用temp交换两个整数 
    void swap(int x , int y) 

        x ^= y; 
        y ^= x; 
        x ^= y; 

    (10)计算绝对值 
    int abs( int x ) 

    int y ; 
    y = x >> 31 ; 
    return (x^y)-y ;        //or: (x+y)^y 

    (11)取模运算转化成位运算 (在不产生溢出的情况下) 
            a % (2^n) 等价于 a & (2^n - 1) 
    (12)乘法运算转化成位运算 (在不产生溢出的情况下) 
            a * (2^n) 等价于 a < < n 
    (13)除法运算转化成位运算 (在不产生溢出的情况下) 
            a / (2^n) 等价于 a>> n 
            例: 12/8 == 12>>3 
    (14) a % 2 等价于 a & 1        
    (15) if (x == a) x= b; 
                else x= a; 
            等价于 x= a ^ b ^ x; 
    (16) x 的 相反数 表示为 (~x+1)




    实例


        功能              ¦          演示样例            ¦    位运算 
    ----------------------+---------------------------+-------------------- 
    去掉最后一位          ¦ (101101->10110)          ¦ x >> 1 
    在最后加一个0        ¦ (101101->1011010)        ¦ x < < 1 
    在最后加一个1        ¦ (101101->1011011)        ¦ x < < 1+1 
    把最后一位变成1      ¦ (101100->101101)          ¦ x ¦ 1 
    把最后一位变成0      ¦ (101101->101100)          ¦ x ¦ 1-1 
    最后一位取反          ¦ (101101->101100)          ¦ x ^ 1 
    把右数第k位变成1      ¦ (101001->101101,k=3)      ¦ x ¦ (1 < < (k-1)) 
    把右数第k位变成0      ¦ (101101->101001,k=3)      ¦ x & ~ (1 < < (k-1)) 
    右数第k位取反        ¦ (101001->101101,k=3)      ¦ x ^ (1 < < (k-1)) 
    取末三位              ¦ (1101101->101)            ¦ x & 7 
    取末k位              ¦ (1101101->1101,k=5)      ¦ x & ((1 < < k)-1)
    取右数第k位          ¦ (1101101->1,k=4)          ¦ x >> (k-1) & 1


    把末k位变成1          ¦ (101001->101111,k=4)      ¦ x ¦ (1 < < k-1) 
    末k位取反            ¦ (101001->100110,k=4)      ¦ x ^ (1 < < k-1) 
    把右边连续的1变成0    ¦ (100101111->100100000)    ¦ x & (x+1) 
    把右起第一个0变成1    ¦ (100101111->100111111)    ¦ x ¦ (x+1) 
    把右边连续的0变成1    ¦ (11011000->11011111)      ¦ x ¦ (x-1) 
    取右边连续的1        ¦ (100101111->1111)        ¦ (x ^ (x+1)) >> 1 
    去掉右起第一个1的左边 ¦ (100101000->1000)        ¦ x & (x ^ (x-1)) 
    推断奇数      (x&1)==1 
    推断偶数 (x&1)==0       


    比如求从x位(高)到y位(低)间共同拥有多少个1


    public static int FindChessNum(int x, int y, ushort k) 
            { 
                int re = 0; 
                for (int i = y; i <= x; i++) 
                { 
                    re += ((k >> (i - 1)) & 1); 
                } 
                return re; 
            }

  • 相关阅读:
    Linux--shell的awk--10
    Spring Boot 整合 tk.mybatis
    pring Boot 整合 Druid
    Thymeleaf 模板布局
    Thymeleaf 内置对象
    Thymeleaf 表达式语法
    Thymeleaf 参考手册
    Thymeleaf常用语法
    Thymeleaf简介及第一个thymeleaf模板
    Docker 安装nginx
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/6958943.html
Copyright © 2020-2023  润新知