直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和
CRB and Puzzle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 133 Accepted Submission(s): 63
Problem Description
CRB is now playing Jigsaw Puzzle.
There areN kinds
of pieces with infinite supply.
He can assemble one piece to the right side of the previously assembled one.
For each kind of pieces, only restricted kinds can be assembled with.
How many different patterns he can assemble with at mostM pieces?
There are
He can assemble one piece to the right side of the previously assembled one.
For each kind of pieces, only restricted kinds can be assembled with.
How many different patterns he can assemble with at most
(Two patterns
Input
There are multiple test cases. The first line of input contains an integer T ,
indicating the number of test cases. For each test case:
The first line contains two integersN , M denoting
the number of kinds of pieces and the maximum number of moves.
ThenN lines
follow. i -th
line is described as following format.
ka1 a2 ... ak
Herek is
the number of kinds which can be assembled to the right of the i -th
kind. Next k integers
represent each of them.
1 ≤T ≤
20
1 ≤N ≤
50
1 ≤M ≤ 105
0 ≤k ≤ N
1 ≤a1 < a2 <
… < ak ≤
N
The first line contains two integers
Then
k
Here
1 ≤
1 ≤
1 ≤
0 ≤
1 ≤
Output
For each test case, output a single integer - number of different patterns modulo 2015.
Sample Input
1 3 2 1 2 1 3 0
Sample Output
6Hintpossible patterns are ∅, 1, 2, 3, 1→2, 2→3
Author
KUT(DPRK)
Source
/* *********************************************** Author :CKboss Created Time :2015年08月20日 星期四 23时25分19秒 File Name :HDOJ5411.cpp ************************************************ */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <cmath> #include <cstdlib> #include <vector> #include <queue> #include <set> #include <map> using namespace std; const int mod=2015; int n,m; struct Matrix { int m[60][60]; Matrix() { memset(m,0,sizeof(m)); } void getE() { for(int i=0;i<n;i++) m[i][i]=1; } void toString() { for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { printf("%d,",m[i][j]); } putchar(10); } } }; Matrix Mulit(Matrix a,Matrix b) { Matrix M; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { int temp=0; for(int k=0;k<n;k++) { temp=(temp+a.m[i][k]*b.m[k][j])%mod; } M.m[i][j]=temp; } } return M; } Matrix QuickPow(Matrix a,int x) { Matrix e; e.getE(); while(x) { if(x&1) e=Mulit(e,a); a=Mulit(a,a); x/=2; } return e; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int T_T; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&m); Matrix M; for(int i=1;i<=n;i++) { int k,x; scanf("%d",&k); for(int j=0;j<k;j++) { scanf("%d",&x); M.m[i][x]=1; } } n++; for(int i=0;i<n;i++) M.m[0][i]=1; Matrix mt=QuickPow(M,m); int ans=0; for(int i=0;i<n;i++) { ans=(ans+mt.m[0][i])%mod; } printf("%d ",ans); } return 0; }