Problem Description
Given an N * M matrix with each entry equal to 0 or 1. We can find some rectangles in the matrix whose entries are all 1, and we define the maximum area of such rectangle as this matrix’s goodness.
We can swap any two columns any times, and we are to make the goodness of the matrix as large as possible.
We can swap any two columns any times, and we are to make the goodness of the matrix as large as possible.
Input
There are several test cases in the input. The first line of each test case contains two integers N and M (1 ≤ N,M ≤ 1000). Then N lines follow, each contains M numbers (0 or 1), indicating the N * M matrix
Output
Output one line for each test case, indicating the maximum possible goodness.
Sample Input
3 4 1011 1001 0001 3 4 1010 1001 0001
Sample Output
4 2 Note: Huge Input, scanf() is recommended.
做法參考网上,记录每一行的连续个数,排序后dp就可以。盗张图
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<limits.h> using namespace std; int n,m; char str[1100]; int num[1100],sum[1100]; int cmp(int a,int b) { return a>b; } int main() { while(~scanf("%d%d",&n,&m)) { getchar(); char ch; int ans=0; memset(num,0,sizeof(num)); for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { scanf("%c",&ch); if(ch=='1') num[j]++; else num[j]=0; sum[j]=num[j]; } sort(sum+1,sum+m+1,cmp); for(int i=1;i<=m;i++) ans=max(ans,sum[i]*i); getchar(); } printf("%d ",ans); } return 0; }