题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5592
ZYB's Premutation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 483 Accepted Submission(s): 236
Problem Description
Z has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ask you to
restore the premutation.
Pair (i,j)(i<j) is considered as a reverse log if Ai>Aj is matched.
restore the premutation.
Pair (i,j)(i<j) is considered as a reverse log if Ai>Aj is matched.
Input
In the first line there is the number of testcases T.
For each teatcase:
In the first line there is one number N.
In the next line there are N numbers Ai,describe the number of the reverse logs of each prefix,
The input is correct.
1≤T,1≤N
For each teatcase:
In the first line there is one number N.
In the next line there are N numbers Ai,describe the number of the reverse logs of each prefix,
The input is correct.
1≤T,1≤N
Output
For each testcase,print the ans.
Sample Input
1
3
0 1 2
Sample Output
3 1 2
Source
题意:输入t,代表t组测试样例,每组样例一个n,代表有n个数,输入n个数a[i],表示从1到i有a[i]个逆序数对,求数字1-n的摆放顺序。
分析:线段树维护。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; int num[50005]; int ans[50005]; int aa[50005]; struct Tree { int x, sum; }a[200005]; void Build(int rt, int l, int r, int n) { if(l == r) { a[rt].x = l; a[rt].sum = 1; return ; } Build(rt*2, l, (l+r)/2, n); Build(rt*2+1, (l+r)/2+1, r, n); a[rt].sum = a[rt*2].sum + a[rt*2+1].sum; } int Querry(int rt, int l, int r, int num) { int ans; if(l == r) { a[rt].sum--; return a[rt].x; } if(num > a[rt*2].sum) ans = Querry(rt*2+1, (l+r)/2+1, r, num - a[rt*2].sum); else ans = Querry(rt*2, l, (l+r)/2, num); a[rt].sum--; return ans; } int main() { int t, n; scanf("%d", &t); while(t--) { scanf("%d", &n); aa[0] = 0; for(int i=1; i<=n; i++) { scanf("%d", &aa[i]); num[i] = aa[i] - aa[i-1];//num[i]保存i前面有多少个比ans[i]大 } Build(1, 1, n, n); for(int i=n; i>=1; i++) { ans[i] = Querry(1, 1, n, num[i]+1); } for(int i=1;i<=n;i++) { printf("%d%c",ans[i],i==n?' ':' '); } } return 0; }