• ML:多变量代价函数和梯度下降(Linear Regression with Multiple Variables)


    代价函数cost function

    • 公式:

      其中,变量θ(Rn+1或者R(n+1)*1

    • 向量化:

    Octave实现:

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    prediction=X*theta;
    sqerror=(prediction-y).^2;
    J=1/(2*m)*sum(sqerror)
      
      
    % =========================================================================
    
    end
    

    多变量梯度下降(gradient descent for multiple variable)

    • 公式:

      也即,
    • 矩阵化:
      梯度下降可以表示为,

      其中,为,

      其中微分可以求得,

      将其向量化后,

      则最终的梯度下降的矩阵化版本,

    Octave版本:

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
    	% ====================== YOUR CODE HERE ======================
    	% Instructions: Perform a single gradient step on the parameter vector
    	%               theta. 
    	%
    	% Hint: While debugging, it can be useful to print out the values
    	%       of the cost function (computeCost) and gradient here.
    	%
    	
    	predictions=X*theta;
    	updates=X'*(predictions-y);
    	theta=theta-alpha*(1/m)*updates;
    
    
    
    	% ============================================================
    
    	% Save the cost J in every iteration    
    	J_history(iter) = computeCost(X, y, theta);
    
    end
    
    end
  • 相关阅读:
    问题:Controller中Response的用法
    C#中字符串前缀@和$
    C#中Viewbag和ViewData的区别
    C#中Session和Cache的区别
    try catch捕获异常
    C#开发中,添加错误日志功能,并自定义错误页面
    数据库索引中,聚集索引和非聚集索引有何区别?
    String和StringBuilder的区别?
    C#函数,引用类型作为值参数,改变参数值后,形参也会改变.重新给实参赋值后,形参则不会改变.
    jQuery操作radio选中和取值
  • 原文地址:https://www.cnblogs.com/mengnan/p/9307707.html
Copyright © 2020-2023  润新知