• Tensorflow中循环神经网络及其Wrappers


    • tf.nn.rnn_cell.LSTMCell

      • 又名:tf.nn.rnn_cell.BasicLSTMCelltf.contrib.rnn.LSTMCell

      • 参见: tf.nn.rnn_cell.LSTMCell

      • 输出:

        • output:LSTM单元输出,与LSTM cell state的区别在于该输出又经过激活以及和一个sigmoid函数输出相乘。shape: [batch_size,num_units]
        • new_state:当前时间步上的LSTM cell stateLSTM output。使用数据结构LSTMStateTuple描述,LSTMStateTuple:(c,h),其中,h与上述的output完全相同。shape: ([batch_size,num_units],[batch_size,num_units])
      • 示例:

        batch_size=10
        embedding_size=300
        inputs=tf.Variable(tf.random_normal([batch_size,embedding_size]))
        previous_state=(tf.Variable(tf.random_normal([batch_size,128])),tf.Variable(tf.random_normal([batch_size,128])))
        lstmcell=tf.nn.rnn_cell.LSTMCell(128)
        outputs,states=lstmcell(inputs,previous_state)
        

        输出:

        outputs:
        <tf.Tensor 'lstm_cell/mul_2:0' shape=(10, 128) dtype=float32>
        
        states:
        LSTMStateTuple(c=<tf.Tensor 'lstm_cell/add_1:0' shape=(10, 128) dtype=float32>, h=<tf.Tensor 'lstm_cell/mul_2:0' shape=(10, 128) dtype=float32>)
        
    • tf.nn.rnn_cell.MultiRNNCell

      • 参见:tf.nn.rnn_cell.MultiRNNCell

      • 输出:

        • outputs: 最顶层cell的最后一个时间步的输出。shape:[batch_size,cell.output_size]
        • states:每一层的state,M层LSTM则输出M个LSTMStateTuple组成的Tuple。
      • 示例:

        batch_size=10
        inputs=tf.Variable(tf.random_normal([batch_size,128]))
        previous_state0=(tf.random_normal([batch_size,100]),tf.random_normal([batch_size,100]))
        previous_state1=(tf.random_normal([batch_size,200]),tf.random_normal([batch_size,200]))
        previous_state2=(tf.random_normal([batch_size,300]),tf.random_normal([batch_size,300]))
        num_units=[100,200,300]
        cells=[tf.nn.rnn_cell.LSTMCell(num_unit) for num_unit in num_units]
        mul_cells=tf.nn.rnn_cell.MultiRNNCell(cells)
        outputs,states=mul_cells(inputs,(previous_state0,previous_state1,previous_state2))
        

        输出:

        outputs:
        <tf.Tensor 'multi_rnn_cell_1/cell_2/lstm_cell/mul_2:0' shape=(10, 300) dtype=float32>
        
        states:
        (LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell_1/cell_0/lstm_cell/add_1:0' shape=(10, 100) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell_1/cell_0/lstm_cell/mul_2:0' shape=(10, 100) dtype=float32>),
         LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell_1/cell_1/lstm_cell/add_1:0' shape=(10, 200) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell_1/cell_1/lstm_cell/mul_2:0' shape=(10, 200) dtype=float32>),
         LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell_1/cell_2/lstm_cell/add_1:0' shape=(10, 300) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell_1/cell_2/lstm_cell/mul_2:0' shape=(10, 300) dtype=float32>))
        
    • tf.nn.dynamic_rnn

      • 参见:tf.nn.dynamic_rnn

      • 输出:

        • outputs: 每个时间步上的LSTM输出;若有多层LSTM,则为每一个时间步上最顶层的LSTM的输出。shape: [batch_size,max_time,cell.output_size]
        • state:最后一个时间步的状态,该状态使用LSTMStateTuple结构输出;若有M层LSTM,则输出M个LSTMStateTuple。shape:单层LSTM输出:[batch_size,cell.output_size];M层LSTM输出:M个LSTMStateTuple组成的Tuple,这也即是说:outputs[:,-1,:]==state[-1,:,:]。
      • 示例:

        batch_size=10
        max_time=20
        data=tf.Variable(tf.random_normal([batch_size,max_time,128]))
        # create a BasicRNNCell
        rnn_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=128)
        
        # defining initial state
        initial_state = rnn_cell.zero_state(batch_size,dtype=tf.float32)
        
        # 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]
        # 'state' is a tensor of shape [batch_size, cell_state_size]
        outputs, state = tf.nn.dynamic_rnn(cell=rnn_cell, inputs=data,
                                           initial_state=initial_state,
                                           dtype=tf.float32)
        

        输出:

        outpus:
        <tf.Tensor 'rnn_2/transpose_1:0' shape=(10, 20, 128) dtype=float32>
        
        state:
        <tf.Tensor 'rnn_2/while/Exit_3:0' shape=(10, 128) dtype=float32>
        
        batch_size=10
        max_time=20
        data=tf.Variable(tf.random_normal([batch_size,max_time,128]))
        # create 2 LSTMCells
        rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]
        
        # create a RNN cell composed sequentially of a number of RNNCells
        multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)
        
        # 'outputs' is a tensor of shape [batch_size, max_time, 256]
        # 'state' is a N-tuple where N is the number of LSTMCells containing a
        # tf.contrib.rnn.LSTMStateTuple for each cell
        outputs, state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,
                                           inputs=data,
                                           dtype=tf.float32)
        
        outputs:
        <tf.Tensor 'rnn_1/transpose_1:0' shape=(10, 20, 256) dtype=float32>
        
        state:
        (LSTMStateTuple(c=<tf.Tensor 'rnn_1/while/Exit_3:0' shape=(10, 128) dtype=float32>, h=<tf.Tensor 'rnn_1/while/Exit_4:0' shape=(10, 128) dtype=float32>),
         LSTMStateTuple(c=<tf.Tensor 'rnn_1/while/Exit_5:0' shape=(10, 256) dtype=float32>, h=<tf.Tensor 'rnn_1/while/Exit_6:0' shape=(10, 256) dtype=float32>))
        
    • tf.nn.bidirectional_dynamic_rnn

      • 参见:tf.nn.bidirectional_dynamic_rnn

      • 输出:

        • outputs:(output_fw,output_bw):前向cell+后向cell

          其中,output_fw、output_bw均为:[batch_size,max_time,cell.output_size]

        • state:(output_state_fw,output_state_bw):包含前向和后向隐状态组成的元组

          其中,output_state_fw、output_state_bw均为LSTMStateTuple。LSTMStateTuple:(c,h),分别为cell_state,hidden_output

    • tf.contrib.seq2seq.dynamic_decode

      • 输出:
        • final_outputs,包含rnn_output和sample_id,分别可用final_output.rnn_output和final_outputs.sample_id获取到。
        • final_state,可以从最后一个解码器状态获取alignments,alignments = tf.transpose(final_decoder_state.alignment_history.stack(), [1, 2, 0])
        • final_sequence_lengths
  • 相关阅读:
    [java学习]java聊天室通信原理
    竖变横表存储过程(万能型)
    到底是什么(反射,泛型,委托,泛型)
    删除表里重复记录两种方法
    三个SQL视图查出所有SQL Server数据库字典
    三种分页语句
    DBHelper
    SQL全局变量
    今天比较STRING和INT,很奇怪
    表之间数据交换与翻页存储过程
  • 原文地址:https://www.cnblogs.com/mengnan/p/10384484.html
Copyright © 2020-2023  润新知