• day5 模块 包 匿名函数 递归调用 序列化 正则


    模块

    为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。

    举个例子,一个aaaa.py的文件就是一个名字叫aaaa的模块,一个bbb.py的文件就是一个名字叫bbb的模块。
    现在,假设我们的aaaa和bbb这两个模块名字与其他模块冲突了,于是我们可以通过包来组织模块,避免冲突。方法是选择一个顶层包名,比如test,按照如下目录存放:

    引入了包以后,只要顶层的包名不与别人冲突,那所有模块都不会与别人冲突。现在,aaaa.py模块的名字就变成了test.aaaa,类似的,bbb.py的模块名变成了test.bbb。
    请注意,每一个包目录下面都会有一个__init__.py的文件,这个文件是必须存在的,否则,Python就把这个目录当成普通目录,而不是一个包。__init__.py可以是空文件,也可以有Python代码,因为__init__.py本身就是一个模块,而它的模块名就是test.

    匿名函数

    关键字lambda表示匿名函数,冒号前面的x表示函数参数。
    匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
    用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

    >>> f = lambda x: x * x
    >>> f
    <function <lambda> at 0x000000000292AF28>
    >>> f(6)
    36
    >>>
    

     递归函数

    在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。 

    def fact(n):
      if n==1:
        return 1
      return n * fact(n - 1)
    上面就是一个递归函数。可以试试:
    >>> fact(1)
    1
    >>> fact(5)
    120
    >>>
    如果我们计算fact(5),可以根据函数定义看到计算过程如下:
    ===> fact(5)
    ===> 5 * fact(4)
    ===> 5 * (4 * fact(3))
    ===> 5 * (4 * (3 * fact(2)))
    ===> 5 * (4 * (3 * (2 * fact(1))))
    ===> 5 * (4 * (3 * (2 * 1)))
    ===> 5 * (4 * (3 * 2))
    ===> 5 * (4 * 6)
    ===> 5 * 24
    ===> 120
    

    递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

    使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。  



    pickle and json序列化

    pickle:

    把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling。序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

    反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。Pickle的问题和所有其他编程语言特有的序列化问题一样,它只能用于Python,只能用Pickle保存那些不重要的数据。

    Python提供了pickle模块来实现序列化。

    pickle模块提供了四个功能:dumps、dump、loads、load

    >>> import pickle
    >>> info = {'name':'tom','age':'24','job':'it'}
    >>> pickle.dumps(info)
    b'x80x03}qx00(Xx04x00x00x00nameqx01Xx03x00x00x00tomqx02Xx03x00x0
    0x00ageqx03Xx02x00x00x0024qx04Xx03x00x00x00jobqx05Xx02x00x00x00i
    tqx06u.'
    >>>
    

     pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

    >>> f = open('a.txt','wb')
    >>> pickle.dump(info,f)
    >>> f.close()
    

     查看写入a.txt文件,这些都是Python保存的对象内部信息。

     

    当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

    >>> f = open('a.txt','rb')
    >>> d = pickle.load(f)
    >>> f.close()
    >>> d
    {'job': 'it', 'age': '24', 'name': 'tom'}
    >>>
    

     

    这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

    json: 

    如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

    Json模块提供了四个功能:dumps、dump、loads、load

    JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

    JSON类型 Python类型
    {} dict
    [] list
    "string" str
    1234.56 int或float
    true/false True/False
    null None

    把Python对象变成一个JSON:

    >>> import json
    >>> info = {'name':'tom','age':'24','job':'it'}
    >>> json.dumps(info)
    '{"job": "it", "age": "24", "name": "tom"}'
    >>>
    

    dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object

    要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

    >>> json_str = '{"job": "it", "age": "24", "name": "tom"}'
    >>> json.loads(json_str)
    {u'job': u'it', u'age': u'24', u'name': u'tom'}

     

    re模块

    re 模块使 Python 语言拥有全部的正则表达式功能。

    正则表达式修饰符 - 可选标志

     

    以下是常用匹配模式(元字符)

    #正则匹配
    # w与W
    >>> print(re.findall('w','as213df_*|'))
    ['a', 's', '2', '1', '3', 'd', 'f', '_']
    >>> print(re.findall('W','as213df_*|'))
    ['*', '|']
    >>> print(re.findall('awb','a_b a3b aEb a*b'))
    ['a_b', 'a3b', 'aEb']
    >>>
    # s与S
    >>> print(re.findall('s','a b
    c	d'))
    [' ', '
    ', '	']
    >>> print(re.findall('S','a b
    c	d'))
    ['a', 'b', 'c', 'd']
    >>>
    
    #d与D
    
    >>> print(re.findall('d','a123bcdef'))
    ['1', '2', '3']
    >>> print(re.findall('D','a123bcdef'))
    ['a', 'b', 'c', 'd', 'e', 'f']
    >>>
    
    #
    与	
    
    >>> print(re.findall('
    ','a123
    bcdef'))
    ['
    ']
    >>> print(re.findall('	','a123	bc	d	ef'))
    ['	', '	', '	']
    >>>
    
    # ^h
    
    >>> print(re.findall('^h','hello egon hao123'))
    ['h']
    >>> print(re.findall('^h','ello egon hao123'))
    []
    >>>
    
    # $
    
    >>> print(re.findall('3$','e3ll3o e3gon hao123'))
    ['3']
    >>> print(re.findall('3$','e3ll3o e3gon hao123asdf'))
    []
    >>>
    
    # .
    
    >>> print(re.findall('a.c','abc a1c a*c a|c abd aed ac'))
    ['abc', 'a1c', 'a*c', 'a|c']
    >>>
    
    #让点能够匹配到换行符
    >>> print(re.findall('a.c','abc a1c a*c a|c abd aed a
    c',re.S))
    ['abc', 'a1c', 'a*c', 'a|c', 'a
    c']
    >>>
    
    # []
    
    >>> print(re.findall('a[1,2
    ]c','a2c a,c abc a1c a*c a|c abd aed a
    c'))
    ['a2c', 'a,c', 'a1c', 'a
    c']
    >>> print(re.findall('a[0-9]c','a2c a,c abc a1c a*c a|c abd aed a
    c'))
    ['a2c', 'a1c']
    >>> print(re.findall('a[0-9a-zA-Z*-]c','a1c abc a*c a-c aEc'))
    ['a1c', 'abc', 'a*c', 'a-c', 'aEc']
    
    >>> print(re.findall('a[^0-9]c','a1c abc a*c a-c aEc'))
    ['abc', 'a*c', 'a-c', 'aEc']
    
    #* + ? {n,m} #重复
    #ab* a ab abbbbbbbbbbbbbbbbbbbbbbbbbbb
    >>> print(re.findall('ab*','a'))
    ['a']
    >>> print(re.findall('ab*','abbbbbb'))
    ['abbbbbb']
    >>> print(re.findall('ab*','bbbbbb'))
    []
    >>>
    
    >>> print(re.findall('ab+','a'))
    []
    >>> print(re.findall('ab+','abbbbbb'))
    ['abbbbbb']
    
    >>> print(re.findall('ab+','bbbbbb'))
    []
    >>>
    
    #ab[123] ab1 ab2 ab3
    >>> print(re.findall('ab[123]','abbbbb123'))
    []
    >>> print(re.findall('ab[123]','ab1 ab2 ab3 abc1'))
    ['ab1', 'ab2', 'ab3']
    >>>
    
    #ab[123] ab1+ ab2+ ab3+
    >>> print(re.findall('ab[123]+','ab11111111 ab2 ab3 abc1'))
    ['ab11111111', 'ab2', 'ab3']
    >>>
    
    #ab[123] ab[123][123][123]
    >>> print(re.findall('ab[123]+','ab1 ab2 ab3 ab4 ab122'))
    ['ab1', 'ab2', 'ab3', 'ab122']
    >>>
    
    #abbb
    >>> print(re.findall('ab{3}','ab1 abbbbbbbb2 abbbbb3 ab4 ab122'))
    ['abbb', 'abbb']
    >>> print(re.findall('ab{3,4}','ab1 abbb123 abbbb123 abbbbbt'))
    ['abbb', 'abbbb', 'abbbb']
    >>> print(re.findall('ab{3,}','ab1 abbb123 abbbb123 abbbbbt'))
    ['abbb', 'abbbb', 'abbbbb']
    >>> print(re.findall('ab{0,}','a123123123 ab1 abbb123 abbbb123 abbbbbt'))
    ['a', 'ab', 'abbb', 'abbbb', 'abbbbb']
    >>> print(re.findall('ab{1,}','a123123123 ab1 abbb123 abbbb123 abbbbbt'))
    ['ab', 'abbb', 'abbbb', 'abbbbb']
    >>>
    

      

  • 相关阅读:
    Hibernate初级
    Servlet, Listener 、 Filter.
    DBCP数据源
    数据库连接池
    MySQL入门笔记
    20170330 webservice代理类测试
    20170330 ABAP代理生成
    20170329 隐士增强问题
    ABAP rfc 发布webservice 错误
    ABAP 性能优化001
  • 原文地址:https://www.cnblogs.com/menglingqian/p/6916399.html
Copyright © 2020-2023  润新知