Description
The Romans have attacked again. This time they are much more than the Persians but Shapur is ready to defeat them. He says: "A lion is never afraid of a hundred sheep".
Nevertheless Shapur has to find weaknesses in the Roman army to defeat them. So he gives the army a weakness number.
In Shapur's opinion the weakness of an army is equal to the number of triplets i, j, k such that i < j < k and ai > aj > ak where ax is the power of man standing at position x. The Roman army has one special trait — powers of all the people in it are distinct.
Help Shapur find out how weak the Romans are.
Input
The first line of input contains a single number n (3 ≤ n ≤ 106) — the number of men in Roman army. Next line contains n different positive integers ai (1 ≤ i ≤ n, 1 ≤ ai ≤ 109) — powers of men in the Roman army.
Output
A single integer number, the weakness of the Roman army.
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
Sample Input
3 3 2 1
1
3 2 3 1
0
4 10 8 3 1
4
4 1 5 4 3
1
题意:求满足三个数是下标i < j < k, 值 a[i] > a[j] > a[k] 的个数
思路:对于每一个数我们向前找比它大的数,向后找比它小的数,相乘就得到这个数的结果了。然后统计全部数的可能,基于数量太大,我们用归并算法。在处理的时候计算
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int maxn = 1e6 + 10; struct Node { ll val, front, rear; } a[maxn], b[maxn]; ll ans; void merge_sort(Node *A, int x, int y, Node *T) { if (y - x > 1) { int m = x + (y -x) / 2; int p = x, q = m, i = x; merge_sort(A, x, m, T); merge_sort(A, m, y, T); while (p < m || q < y) { if (q >= y || (p < m && A[p].val <= A[q].val)) { ans += A[p].front * (q - m); A[p].rear += (q - m); T[i++] = A[p++]; } else { ans += A[q].rear * (m - p); A[q].front += (m - p); T[i++] = A[q++]; } } for (i = x; i < y; i++) A[i] = T[i]; } } int main() { int n; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%lld", &a[i].val); ans = 0; merge_sort(a, 0, n, b); cout << ans << endl; return 0; }