• CSU 1659: Graph Center(SPFA)


    1659: Graph Center

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 63  Solved: 25
    [Submit][Status][Web Board]

    Description

    The center of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices A where the greatest distance d(A,B) to other vertices B is minimal. Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. Thus vertices in the center (central points) minimize the maximal distance from other points in the graph.
                                                                                                                 ------wikipedia
    Now you are given a graph, tell me the vertices which are the graph center.

    Input

    There are multiple test cases.
    The first line will contain a positive integer T (T ≤ 300) meaning the number of test cases.
    For each test case, the first line contains the number of vertices N (3 ≤ N ≤ 100) and the number of edges M (N - 1 ≤ N * (N - 1) / 2). Each of the following N lines contains two vertices x (1 ≤ x ≤ N) and y (1 ≤ y ≤ N), meaning there is an edge between x and y.

    Output

    The first line show contain the number of vertices which are the graph center. Then the next line should list them by increasing order, and every two adjacent number should be separated by a single space.

    Sample Input

    2
    4 3
    1 3
    1 2
    2 4
    5 5
    1 4
    1 3
    2 4
    2 3
    4 5
    

    Sample Output

    2
    1 2
    3
    1 2 4
    

    HINT

    Source

    #include<stdio.h> 
    #include<queue> 
    #include<string.h> 
    using namespace std; 
      
    const int MAXN = 105; 
    const int MAXM = 100005; 
    const int INF = 1<<30; 
    struct EDG{ 
        int to,next; 
    }edg[MAXM]; 
    int eid,head[MAXN]; 
      
    void init(){ 
        eid=0; 
        memset(head,-1,sizeof(head)); 
    } 
    void addEdg(int u,int v){ 
        edg[eid].to=v; edg[eid].next=head[u]; head[u]=eid++; 
        edg[eid].to=u; edg[eid].next=head[v]; head[v]=eid++; 
    } 
    int spfa(int s,int n){ 
        queue<int>q; 
        bool inq[MAXN]={0}; 
        int d[MAXN]; 
        for(int i=1; i<=n; i++) 
            d[i]=INF; 
        d[s]=0; 
        q.push(s); 
        while(!q.empty()){ 
            int u=q.front(); q.pop(); 
            inq[s]=0; 
            for(int i=head[u]; i!=-1; i=edg[i].next){ 
                int v=edg[i].to; 
                if(d[v]>d[u]+1){ 
                    d[v]=d[u]+1; 
                    if(!inq[v]) 
                     q.push(v),inq[v]=1; 
                } 
            } 
        } 
        int maxt=0; 
        for(int i=1; i<=n; i++) 
            if(maxt<d[i]) 
             maxt=d[i]; 
        return maxt; 
    } 
    int main(){ 
        int T,n,m,u,v,d[MAXN],id[MAXN]; 
        scanf("%d",&T); 
        while(T--){ 
            scanf("%d%d",&n,&m); 
            init(); 
            while(m--){ 
                scanf("%d%d",&u,&v); 
                addEdg(u,v); 
            } 
            int mint=INF; 
            for(int i=1;i<=n;i++){ 
                d[i]=spfa(i,n); 
                if(d[i]<mint) 
                mint=d[i]; 
            } 
            int k=0; 
            for(int i=1; i<=n; i++) 
             if(mint==d[i]){ 
                id[k++]=i; 
             } 
             printf("%d
    ",k); 
             for(int i=0; i<k; i++){ 
                printf("%d",id[i]); 
                if(i!=k-1) 
                 printf(" "); 
                else
                printf("
    "); 
             } 
        } 
    } 
      
    /************************************************************** 
        Problem: 1659 
        User: aking2015 
        Language: C++ 
        Result: Accepted 
        Time:256 ms 
        Memory:1848 kb 
    ****************************************************************/ 
    


  • 相关阅读:
    如何实现九宫格布局-----源码如下
    查询出的数据记录字段要与实体类中的属性名一致
    2016/12/14---- C3P0
    Spring的数据库操作---- Spring框架对JDBC的整合 ---- 初始化JdbcTemplate对象
    Spring的数据库操作---- Spring框架对JDBC的整合---- 初始化连接池数据源对象
    Spring的数据库操作---- Spring框架对JDBC的整合---- Spring的数据库操作
    Spring的数据库操作---- Spring框架对JDBC的整合---- spring集成jdbc概述
    Spring的AOP机制---- AOP的注解配置---- AOP的注解配置
    Spring的AOP机制---- 切入点表达式---- 切入点表达式
    Spring的AOP机制---- AOP环绕通知---- AOP环绕通知
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5123869.html
Copyright © 2020-2023  润新知