http://poj.org/problem?id=2417
A^x = B(mod C),已知A,B。C。求x。
这里C是素数,能够用普通的baby_step。
在寻找最小的x的过程中,将x设为i*M+j。从而原始变为A^M^i * A^j = B(mod C),D = A^M,那么D^i * A^j = B(mod C ),
预先将A^j存入hash表中,然后枚举i(0~M-1),依据扩展欧几里得求出A^j。再去hash表中查找对应的j,那么x = i*M+j。
确定x是否有解,就是在循环i的时候推断对应A^j是否有解。并且最小的解x一定在(0~C-1),由于gcd(D^i,C) = 1.
假设(0~C-1)无解,那么一定无解。
由于A^x%C(C是素数)有循环节。A^x%C = A^(x%phi[c])%C,循环节的长度为phi(C),即C-1,x >= C以后開始新一轮的循环,因此(0~C-1)内无解的话。一定无解。
#include <stdio.h> #include <iostream> #include <map> #include <set> #include <list> #include <stack> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #include <algorithm> #define LL long long #define _LL __int64 #define eps 1e-12 #define PI acos(-1.0) using namespace std; const int maxn = 499991; bool hash[maxn+10]; int idx[maxn+10]; LL val[maxn+10]; //插入哈希表 void insert(int id, LL vv) { int v = vv % maxn; while(hash[v] && val[v] != vv) { v++; if(v == maxn) v -= maxn; } if(!hash[v]) { hash[v] = true; idx[v] = id; val[v] = vv; } } //查找vv相应的jj,A^jj = vv int found(LL vv) { int v = vv%maxn; while(hash[v] && val[v] != vv) { v++; if(v == maxn) v -= maxn; } if(hash[v] == false) return -1; return idx[v]; } void extend_gcd(LL a, LL b, LL &x, LL &y) { if(b == 0) { x = 1; y = 0; return; } extend_gcd(b,a%b,x,y); LL t = x; x = y; y = t-a/b*y; } /* A^x = B(mod C) 令x = i*M+j, 当中M = ceil(sqrt(C*1.0)),(0 <= i,j < M) 那么原式变为A^M^i*A^j = B(mod c) 先枚举j(0~M-1),将A^j%C存入hash表中 令D = A^M%C,X = A^j,那么D^i*X = B(mod C) 枚举i(0~M-1)求得D^i设为DD。DD*X = B(mod C) DD,C已知,由于C是素数,gcd(DD,C) = 1,依据扩展欧几里得知在[0,C-1]内有唯一一个解X。 然后在hash表中查找X相应的jj。即A^jj = X。那么x = i*M+jj,若找不到jj无解。 */ LL baby_step(LL A, LL B, LL C) { memset(hash,false,sizeof(hash)); memset(idx,-1,sizeof(idx)); memset(val,-1,sizeof(val)); LL M = ceil(sqrt(C*1.0)); //将A^j存入hash表中 LL D = 1; for(int j = 0; j < M; j++) { insert(j,D); D = D*A%C; } //D = A^M%C,res = D^i,求方程res*X = B(mod C)中的X,去找X相应的jj,那么x=i*M+jj. LL res = 1,x,y; for(int i = 0; i < M; i++) { extend_gcd(res,C,x,y); x = x*B; x = (x%C+C)%C; int jj = found(x); if(jj != -1) { return (LL)i*M+jj; } res = res*D%C; } return -1; } int main() { LL A,B,C; while(~scanf("%lld %lld %lld",&C,&A,&B)) { LL res = baby_step(A,B,C); if(res == -1) printf("no solution "); else printf("%lld ",res); } return 0; }