• Cf 444C DZY Loves Colors(段树)


    DZY loves colors, and he enjoys painting.

    On a colorful day, DZY gets a colorful ribbon, which consists of n units (they are numbered from 1 to n from left to right). The color of thei-th unit of the ribbon is i at first. It is colorful enough, but we still consider that the colorfulness of each unit is 0 at first.

    DZY loves painting, we know. He takes up a paintbrush with color x and uses it to draw a line on the ribbon. In such a case some contiguous units are painted. Imagine that the color of unit i currently is y. When it is painted by this paintbrush, the color of the unit becomes x, and the colorfulness of the unit increases by |x - y|.

    DZY wants to perform m operations, each operation can be one of the following:

    1. Paint all the units with numbers between l and r (both inclusive) with color x.
    2. Ask the sum of colorfulness of the units between l and r (both inclusive).

    Can you help DZY?

    Input

    The first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105).

    Each of the next m lines begins with a integer type (1 ≤ type ≤ 2), which represents the type of this operation.

    If type = 1, there will be 3 more integers l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 108) in this line, describing an operation 1.

    If type = 2, there will be 2 more integers l, r (1 ≤ l ≤ r ≤ n) in this line, describing an operation 2.

    Output

    For each operation 2, print a line containing the answer — sum of colorfulness.

    Sample test(s)
    input
    3 3
    1 1 2 4
    1 2 3 5
    2 1 3
    
    output
    8
    
    input
    3 4
    1 1 3 4
    2 1 1
    2 2 2
    2 3 3
    
    output
    3
    2
    1
    
    input
    10 6
    1 1 5 3
    1 2 7 9
    1 10 10 11
    1 3 8 12
    1 1 10 3
    2 1 10
    
    output
    129
    
    Note

    In the first sample, the color of each unit is initially [1, 2, 3], and the colorfulness is [0, 0, 0].

    After the first operation, colors become [4, 4, 3], colorfulness become [3, 2, 0].

    After the second operation, colors become [4, 5, 5], colorfulness become [3, 3, 2].

    So the answer to the only operation of type 2 is 8.

    线段树的操作,因为涉及到·类似染色的问题。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    typedef long long LL;
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int maxn=1e5+100;
    LL col[maxn<<2],sum[maxn<<2],d[maxn<<2];//col[i]!=0代表区间颜色都为col[i];d[i]用于lazy操作
    int n,m;
    void pushup(int rs)
    {
        if(col[rs<<1]==col[rs<<1|1])   col[rs]=col[rs<<1];
        else    col[rs]=0;
        sum[rs]=sum[rs<<1]+sum[rs<<1|1];
    }
    void pushdown(int rs,int m)
    {
        if(col[rs])
        {
            col[rs<<1]=col[rs<<1|1]=col[rs];
            d[rs<<1]+=d[rs];d[rs<<1|1]+=d[rs];
            sum[rs<<1]+=(LL)(m-(m>>1))*d[rs];
            sum[rs<<1|1]+=(LL)(m>>1)*d[rs];
            d[rs]=col[rs]=0;
        }
    }
    void build(int rs,int l,int r)
    {
        if(l==r)
        {
            sum[rs]=0;
            col[rs]=l;
            return ;
        }
        col[rs]=d[rs]=0;
        int mid=(l+r)>>1;
        build(rs<<1,l,mid);
        build(rs<<1|1,mid+1,r);
        pushup(rs);
    }
    void update(int rs,int x,int y,int l,int r,int c)
    {
        if(l>=x&&r<=y&&col[rs])
        {
            sum[rs]+=abs(col[rs]-c)*(LL)(r-l+1);
            d[rs]+=abs(col[rs]-c);
            col[rs]=c;
            return ;
        }
        pushdown(rs,r-l+1);
        int mid=(l+r)>>1;
        if(x<=mid)  update(rs<<1,x,y,l,mid,c);
        if(y>mid)   update(rs<<1|1,x,y,mid+1,r,c);
        pushup(rs);
    }
    LL query(int rs,int x,int y,int l,int r)
    {
    //    cout<<"2333  "<<<<endl;
        if(l>=x&&y>=r)
            return sum[rs];
    //    if(l==r)  return sum[rs];
        int mid=(l+r)>>1;
        pushdown(rs,r-l+1);
        LL res=0;
        if(x<=mid)  res+=query(rs<<1,x,y,l,mid);
        if(y>mid)   res+=query(rs<<1|1,x,y,mid+1,r);
        return res;
    }
    int main()
    {
     //    std::ios::sync_with_stdio(false);
         int l,r,x,op;
         while(~scanf("%d%d",&n,&m))
         {
              build(1,1,n);
              while(m--)
              {
                  scanf("%d",&op);
                  if(op==1)
                  {
                      scanf("%d%d%d",&l,&r,&x);
                      update(1,l,r,1,n,x);
                  }
                  else
                  {
                      scanf("%d%d",&l,&r);
                      printf("%I64d
    ",query(1,l,r,1,n));
                  }
              }
         }
         return 0;
    }
    


    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    SQL常用优化手法
    winform 文件上传
    在主线程中开启同步任务,为什么会阻塞线程
    KVC与KVO
    android shape的使用
    如何导入开源工程
    图片资源的设定
    如何进行程序的反编译和防止反编译
    log的管理
    通过反射机制拿到被隐藏的类(获取应用程序的缓存大小)
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/4739162.html
Copyright © 2020-2023  润新知