DZY loves colors, and he enjoys painting.
On a colorful day, DZY gets a colorful ribbon, which consists of n units (they are numbered from 1 to n from left to right). The color of thei-th unit of the ribbon is i at first. It is colorful enough, but we still consider that the colorfulness of each unit is 0 at first.
DZY loves painting, we know. He takes up a paintbrush with color x and uses it to draw a line on the ribbon. In such a case some contiguous units are painted. Imagine that the color of unit i currently is y. When it is painted by this paintbrush, the color of the unit becomes x, and the colorfulness of the unit increases by |x - y|.
DZY wants to perform m operations, each operation can be one of the following:
- Paint all the units with numbers between l and r (both inclusive) with color x.
- Ask the sum of colorfulness of the units between l and r (both inclusive).
Can you help DZY?
The first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105).
Each of the next m lines begins with a integer type (1 ≤ type ≤ 2), which represents the type of this operation.
If type = 1, there will be 3 more integers l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 108) in this line, describing an operation 1.
If type = 2, there will be 2 more integers l, r (1 ≤ l ≤ r ≤ n) in this line, describing an operation 2.
For each operation 2, print a line containing the answer — sum of colorfulness.
3 3 1 1 2 4 1 2 3 5 2 1 3
8
3 4 1 1 3 4 2 1 1 2 2 2 2 3 3
3 2 1
10 6 1 1 5 3 1 2 7 9 1 10 10 11 1 3 8 12 1 1 10 3 2 1 10
129
In the first sample, the color of each unit is initially [1, 2, 3], and the colorfulness is [0, 0, 0].
After the first operation, colors become [4, 4, 3], colorfulness become [3, 2, 0].
After the second operation, colors become [4, 5, 5], colorfulness become [3, 3, 2].
So the answer to the only operation of type 2 is 8.
线段树的操作,因为涉及到·类似染色的问题。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> typedef long long LL; using namespace std; #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i ) #define CLEAR( a , x ) memset ( a , x , sizeof a ) const int maxn=1e5+100; LL col[maxn<<2],sum[maxn<<2],d[maxn<<2];//col[i]!=0代表区间颜色都为col[i];d[i]用于lazy操作 int n,m; void pushup(int rs) { if(col[rs<<1]==col[rs<<1|1]) col[rs]=col[rs<<1]; else col[rs]=0; sum[rs]=sum[rs<<1]+sum[rs<<1|1]; } void pushdown(int rs,int m) { if(col[rs]) { col[rs<<1]=col[rs<<1|1]=col[rs]; d[rs<<1]+=d[rs];d[rs<<1|1]+=d[rs]; sum[rs<<1]+=(LL)(m-(m>>1))*d[rs]; sum[rs<<1|1]+=(LL)(m>>1)*d[rs]; d[rs]=col[rs]=0; } } void build(int rs,int l,int r) { if(l==r) { sum[rs]=0; col[rs]=l; return ; } col[rs]=d[rs]=0; int mid=(l+r)>>1; build(rs<<1,l,mid); build(rs<<1|1,mid+1,r); pushup(rs); } void update(int rs,int x,int y,int l,int r,int c) { if(l>=x&&r<=y&&col[rs]) { sum[rs]+=abs(col[rs]-c)*(LL)(r-l+1); d[rs]+=abs(col[rs]-c); col[rs]=c; return ; } pushdown(rs,r-l+1); int mid=(l+r)>>1; if(x<=mid) update(rs<<1,x,y,l,mid,c); if(y>mid) update(rs<<1|1,x,y,mid+1,r,c); pushup(rs); } LL query(int rs,int x,int y,int l,int r) { // cout<<"2333 "<<<<endl; if(l>=x&&y>=r) return sum[rs]; // if(l==r) return sum[rs]; int mid=(l+r)>>1; pushdown(rs,r-l+1); LL res=0; if(x<=mid) res+=query(rs<<1,x,y,l,mid); if(y>mid) res+=query(rs<<1|1,x,y,mid+1,r); return res; } int main() { // std::ios::sync_with_stdio(false); int l,r,x,op; while(~scanf("%d%d",&n,&m)) { build(1,1,n); while(m--) { scanf("%d",&op); if(op==1) { scanf("%d%d%d",&l,&r,&x); update(1,l,r,1,n,x); } else { scanf("%d%d",&l,&r); printf("%I64d ",query(1,l,r,1,n)); } } } return 0; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。