• Metropolis Hasting算法


    Metropolis Hasting Algorithm:

    MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样。主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度。它的优点,不用多说,自然是能够对付数学形式复杂的概率密度。有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了。

    今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄。即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问题不同对待,多试验几次。当然你也能够始终选择“理想”參数。

    还是拿上次的混合高斯分布来做模拟,模拟次数为500000次的时候,概率分布逼近的程度例如以下图。尽管几个明显的"峰"已经出来了,可是数值上还是 有非常大差异的。预计是我的漂移方差没有选好。感觉还是inverse sampling好用,迭代次数不用非常多,就能够达到相当的逼近程度。

    试了一下MH算法,

    R Code:

    p=function(x,u1,sig1,u2,sig2){
    (1/3)*(1/(sqrt(2*pi)*15)*exp(-0.5*(x-70)^2/15^2)+1/(sqrt(2*pi)*11)*exp(-0.5*(x+80)^2/11^2)+1/(sqrt(2*pi)*sig1)*exp(-0.5*(x-u1)^2/sig1^2)+1/(sqrt(2*pi)*sig2)*exp(-0.5*(x-u2)^2/sig2^2))
    }


    MH=function(x0,n){
    x=NULL
    x[1] = x0
    for (i in 1:n){
      x_can= x[i]+rnorm(1,0,3.25)
      d= p(x_can,10,30,-10,10)/p(x[i],10,30,-10,10)
      alpha= min(1,d)
      u=runif(1,0,1)
        if (u<alpha){
        x[i+1]=x_can}
        else{
          x[i+1]=x[i]
         }
       if (round(i/100)==i/100) print(i)
    }
    x
    }
    z=MH(10,99999)
    z=z[-10000]
    a=seq(-100,100,0.2)

    plot(density(z),col=1,main='Estimated Density',ylim=c(0,0.02),lty=1)
    points(a, p(a,10,30,-10,10),pch='.',col=2,lty=2)
    legend(60,0.02,c("True","Sim (MH)"),col=c(1,2),lty=c(1,2))

  • 相关阅读:
    难以实践敏捷:估算
    使用AsyncEnumerator简化异步操作
    ESXi 入门配置
    学习模式,不如先了解问题
    我应该用哪种虚拟机?(一)
    在2003上实现Custom Task Pane
    我应该用哪种虚拟机?(终)
    我应该用哪种虚拟机?(二)
    正则表达式周二挑战赛 第十二周
    [译]Node中的ES6特性
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/4045610.html
Copyright © 2020-2023  润新知