• hdu1394--Minimum Inversion Number(线段树求逆序数,纯为练习)


    Minimum Inversion Number

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10326 Accepted Submission(s): 6359


    Problem Description
    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

    For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

    a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
    a2, a3, ..., an, a1 (where m = 1)
    a3, a4, ..., an, a1, a2 (where m = 2)
    ...
    an, a1, a2, ..., an-1 (where m = n-1)

    You are asked to write a program to find the minimum inversion number out of the above sequences.

    Input
    The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.

    Output
    For each case, output the minimum inversion number on a single line.

    Sample Input
    10 1 3 6 9 0 8 5 7 4 2

    Sample Output
    16
    题目大意,从初始的数组開始,每次把第一个加到最后一个,求逆序数,共求出n个逆序数,找出最小值
    对每种情况都求逆序数,能够每次都归并排序,或树状数组,或线段树,也能够由上一个的逆序数推出;
    a[1] , a[2] , a[3] 。。。a[n],将a[1]放到最后,然后将a[2]放到最后,能够找到规律,将首个a[i]放到最后时,逆序数添加了 a[i]之前比a[i]大的,添加a[i]之后比a[i]大的,减小了a[i]之前比a[i]小的,减小了a[i]之后比a[i]小的,又由于每次给出的数n个数在0到n,且都不同,最后得出 逆序数会添加 n-a[i]个,降低a[i]-1个
    #include <cstdio>
    #include <cstring>
    #define INF 0x3f3f3f3f
    #include <algorithm>
    using namespace std;
    int tree[100000] , p[6000] , q[6000];
    void update(int o,int x,int y,int u)
    {
        if( x == y && x == u )
            tree[o]++ ;
        else
        {
            int mid = (x + y)/ 2;
            if( u <= mid )
                update(o*2,x,mid,u);
            else
                update(o*2+1,mid+1,y,u);
            tree[o] = tree[o*2] + tree[o*2+1];
        }
    }
    int sum(int o,int x,int y,int i,int j)
    {
        int ans = 0 ;
        if( i <= x && y <= j )
            return tree[o] ;
        else
        {
            int mid = (x + y) /2 ;
            if( i <= mid )
                ans += sum(o*2,x,mid,i,j);
            if( mid+1 <= j )
                ans += sum(o*2+1,mid+1,y,i,j);
        }
        return ans ;
    }
    int main()
    {
        int i , j , n , min1 , num ;
        while(scanf("%d", &n)!=EOF)
        {
            min1 = 0 ;
            memset(q,0,sizeof(q));
            for(i = 1 ; i <= n ; i++)
            {
                scanf("%d", &p[i]);
                p[i]++ ;
            }
            memset(tree,0,sizeof(tree));
            for(i = 1 ; i <= n ; i++)
            {
                min1 += sum(1,1,n,p[i],n);
                update(1,1,n,p[i]);
            }
            num = min1 ;
            for(i = 1 ; i < n ; i++)
            {
                num = num + ( n - p[i] ) - (p[i] - 1) ;
                if( num < min1 )
                    min1 = num ;
            }
            printf("%d
    ", min1);
        }
        return 0;
    }
    


  • 相关阅读:
    JSTL标签
    EL(表达式语言)
    JDBC技术
    Java中的一些术语的解释
    Servlet过滤器和监听器
    MVC-初识
    EF-初识
    .NET细节知识总结,不断更新
    多线程-Task、await/async
    多线程-Thread和ThreadPool
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3999785.html
Copyright © 2020-2023  润新知