• 一步一步写算法(之排序二叉树)


    【 声明:版权全部,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】


        前面我们讲过双向链表的数据结构。每个循环节点有两个指针,一个指向前面一个节点,一个指向后继节点,这样全部的节点像一颗颗珍珠一样被一根线穿在了一起。然而今天我们讨论的数据结构却有一点不同,它有三个节点。它是这样定义的:

    typedef struct _TREE_NODE
    {
    	int data;
    	struct _TREE_NODE* parent;
    	struct _TREE_NODE* left_child;
    	struct _TREE_NODE* right_child;
    }TREE_NODE;
        依据上面的数据结构,我们看到每个数据节点都有三个指针,各自是:指向父母的指针,指向左孩子的指针,指向右孩子的指针。每个节点都是通过指针相互连接的。相连指针的关系都是父子关系。那么排序二叉树又是什么意思呢?事实上非常easy,仅仅要在二叉树的基本定义上添加两个基本条件就能够了:(1)全部左子树的节点数值都小于此节点的数值;(2)全部右节点的数值都大于此节点的数值。

        既然看到了节点的定义,那么我们并能够得到,仅仅要依照一定的顺序遍历,能够把二叉树中的节点依照某一个顺序打印出来。那么,节点的创建、查找、遍历是怎么进行的呢,二叉树的高度应该怎么计算呢?我们一一道来。

        1)创建二叉树节点

    TREE_NODE* create_tree_node(int data)
    {
    	TREE_NODE* pTreeNode = NULL;
    	pTreeNode = (TREE_NODE*)malloc(sizeof(TREE_NODE));
    	assert(NULL != pTreeNode);
    
    	memset(pTreeNode, 0, sizeof(TREE_NODE));
    	pTreeNode->data = data;
    	return pTreeNode;
    }
        分析:我们看到,二叉树节点的创建和我们看到的链表节点、堆栈节点创建没有什么本质的差别。首先须要为节点创建内存,然后对内存进行初始化处理。最后将输入參数data输入到tree_node其中就可以。


        2)数据的查找

    TREE_NODE* find_data_in_tree_node(const TREE_NODE* pTreeNode, int data)
    {
    	if(NULL == pTreeNode)
    		return NULL;
    
    	if(data == pTreeNode->data)
    		return (TREE_NODE*)pTreeNode;
    	else if(data < pTreeNode->data)
    		return find_data_in_tree_node(pTreeNode->left_child, data);
    	else
    		return find_data_in_tree_node(pTreeNode->right_child, data);
    }
        分析:我们的查找是依照递归迭代进行的。由于整个二叉树是一个排序二叉树,所以我们的数据仅仅须要和每个节点依次比較就能够了,假设数值比节点数据小,那么向左继续遍历;反之向右继续遍历。假设遍历下去遇到了NULL指针,仅仅能说明当前的数据在二叉树中还不存在。


        3)数据统计

    int count_node_number_in_tree(const TREE_NODE* pTreeNode)
    {
    	if(NULL == pTreeNode)
    		return 0;
    
    	return 1 + count_node_number_in_tree(pTreeNode->left_child)
    		+ count_node_number_in_tree(pTreeNode->right_child);
    }
        分析:和上面查找数据一样,统计的工作也比較简单。假设是节点指针,那么直接返回0就可以,否则就须要分别统计左节点树的节点个数、右节点树的节点个数,这样全部的节点总数加起来就能够了。


        4)依照从小到大的顺序打印节点的数据

    void print_all_node_data(const TREE_NODE* pTreeNode)
    {
    	if(pTreeNode){
    		print_all_node_data(pTreeNode->left_child);
    		printf("%d
    ", pTreeNode->data);
    		print_all_node_data(pTreeNode->right_child);
    	}
    }
        分析:由于二叉树本身的特殊性,按顺序打印二叉树的函数本身也比較简单。首先打印左子树的节点,然后打印本节点的数值,最后打印右子树节点的数值,这样全部节点的数值就都能够打印出来了。


        5)统计树的高度

    int calculate_height_of_tree(const TREE_NODE* pTreeNode)
    {
    	int left, right;
    	if(NULL == pTreeNode)
    		return 0;
    
    	left = calculate_height_of_tree(pTreeNode->left_child);
    	right = calculate_height_of_tree(pTreeNode->right_child);
    	return (left > right) ? (left + 1) : (right + 1);
    }
        分析:树的高度事实上是指全部叶子节点中,从根节点到叶子节点的最大高度能够达到多少。当然,程序中表示得已经非常明确了,假设节点为空,那么非常遗憾,节点的高度为0;反之假设左子树的高度大于右子树的高度,那么整个二叉树的节点高度就是左子树的高度加上1;假设右子树的高度大于左子树的高度,那么整个二叉树的高度就是右子树的高度加上1。计算树的高度在我们设计平衡二叉树的时候非常实用,特别是測试的时候,希望大家多多理解,熟练掌握。


    总结:

        1)二叉树是全部树的基础,兴许的平衡二叉树、线性二叉树、红黑树、复合二叉树、b树、b+树都以此为基础,希望大家好好学习;

        2)二叉树非常多的操作是和堆栈紧密联系在一起的,假设大家临时理解不了递归,能够用循环或者堆栈取代;

        3)实践出真知,大家能够自己对排序二叉树的代码多多练习。不瞒大家说,我个人写平衡二叉树不下20多遍,即使这样也不能保证每次都正确;即使这样,我每次写代码的都有不同的感觉。


    【预告: 以下一篇博客介绍平衡二叉树的插入和删除】


  • 相关阅读:
    matplotlib的使用——scatter散点图的绘制
    OpenCVPython系列之立体图像的深度图
    YOLOv3 cfg文件详解
    Opencv的使用小教程2——Opencv常用图像处理函数汇总
    数字世界中的纸张——理解 PDF
    go channel初步
    Unity学习记录 导航
    elasticsearch的keyword与text的区别
    markdownitcontainer
    Windows 编译opensll
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3806940.html
Copyright © 2020-2023  润新知