• 二叉树的简单接口


    直接上代码:

    #pragma once
    #include<queue>
    #include<stack>
    #include<iostream>
    using namespace std;
    
    //树中节点结构
    template<class T>
    struct BinaryTreeNode
    {
    	T _data;
    	BinaryTreeNode<T>* _left;
    	BinaryTreeNode<T>* _right;
    
    	//节点需要初始化(赋值)
    	BinaryTreeNode(const T& x)
    		:_data(x)
    		,_left(NULL)
    		,_right(NULL)
    	{}
    };
    
    //树的结构
    template<class T>
    class BinaryTree
    {
    public:
    	//无参构造
    	BinaryTree()
    		:_root(NULL)
    	{}
    
    	//传来一个数组 构造一棵树
    	BinaryTree(const T* a,size_t size)
    	{
    		size_t index = 0;//数组中的下标;
    		_root = _CreateTree(a,size,index);
    	}
    
    	//拷贝构造
    	BinaryTree(const BinaryTreeNode<T>& x)
    	{
    		_root = _Copy(x);
    	}
    
    	BinaryTree<T>* _Copy(BinaryTreeNode<T>* root)
    	{	
    		if (root == NULL)
    		{
    			return NULL;
    		}
    		
    		BinaryTreeNode<T>* newRoot = new BinaryTreeNode<T>(root->_data);
    		newRoot->_left = _Copy(root->_left);
    		newRoot->_right = _Copy(root->_right);
    
    		return newRoot;
    	}
    
    
    	//赋值运算符的重载
    	BinaryTree<T>& operator=(const BinaryTreeNode<T>& x)
    	{
    		if(this != &x)
    		{
    			swap(_root,x._root);
    		}
    		return *this;
    	}
    
    	//深度
    	int Depth(BinaryTreeNode<T>* root)
    	{
    		if(root == NULL)
    		{
    			return 0;
    		}
    		else
    		{
    			int LeftDepth = Depth(root->_left);
    			int RightDepth = Depth(root->_right);
    			return LeftDepth > RightDepth ? LeftDepth+1:RightDepth+1;
    		}
    	}
    
    	//查找节点
    	BinaryTreeNode<T>* Find(BinaryTreeNode<T>* root,const T& x)
    	{
    		if(root == NULL)
    		{
    			return NULL;
    		}
    		else if(root->_data == x)
    		{
    			return root;
    		}
    		else
    		{
    			BinaryTreeNode<T>* tem =Find(root->_left,x);
    
    			if(tem)
    			{
    				return tem;
    			}
    			else 
    			{
    				return Find(root->_right,x);
    			}
    		}
    
    	}
    
    	//大小
    	//int Size(BinaryTreeNode<T>* root,int& size)
    	//{
    	//	if(root == NULL)
    	//	{
    	//		return 0;
    	//	}
    	//	else
    	//	{
    	//	    ++size;
    	//	}
    	//	Size(root->_left,size);
    	//	Size(root->_right,size);
    	//	return size;
    	//}
    
    	//大小
    	int GetNodeNum(BinaryTreeNode<T>* root)
    	{
    		if(root == NULL) //递归出口
    		{
    			return 0;
    		}
    		return GetNodeNum(root->_left) + GetNodeNum(root->_right) + 1;
    	}
    
    
    	//中序遍历
    	void InOrder(BinaryTreeNode<T>* root)
    	{
    		if(root != NULL)
    		{
    			InOrder(root->_left);
    			cout<<root->_data<<"-";
    			InOrder(root->_right);
    		}
    	}
    
    	//后序遍历
    	void PostOrder(BinaryTreeNode<T>* root)
    	{
    		if(root != NULL)
    		{
    			PostOrder(root->_left);
    			PostOrder(root->_right);
    			cout<<root->_data<<"-";
    		}
    	}
    
    	//层序遍历
    	void LevelOrder(BinaryTreeNode<T>* root)
    	{
    		queue<BinaryTreeNode<T>*> q;
    		if(root == NULL)
    		{
    			return;
    		}
    		BinaryTreeNode<T>* node = NULL;
    		q.push(root);
    		while(!q.empty())
    		{
    			node = q.front();
    			q.pop();
    			cout<<node->_data<<"-";
    			if(node->_left != NULL)
    			{
    				q.push(node->_left);
    			}
    
    			if(node->_right != NULL)
    			{
    				q.push(node->_right);
    			}
    		}
    	}
    
    	//前序遍历
    	void PrveOrder(BinaryTreeNode<T>* root)
    	{
    		if(root != NULL)
    		{
    			cout<<root->_data<<"-";
    			PrveOrder(root->_left);
    			PrveOrder(root->_right);
    		}
    	}
    	
    	//求二叉树第K层的节点个数
    	//递归解法: 
        //(1)如果二叉树为空或者k<1返回0 
        //(2)如果二叉树不为空并且k==1,返回1 
        //(3)如果二叉树不为空且k>1,返回左子树中k-1层的节点个数与右子树k-1层节点个数之和 
    	int GetNodeNumKthLevel(BinaryTreeNode<T>* root, int k)
    	{
    		if(root == NULL || k < 1)
    		{
    			return 0;
    		}
    		if(k == 1) //能下来说明 ROOT不是空
    		{
    			return 1; //递归结束条件
    		}
    
    		int leftNum = GetNodeNumKthLevel(root->_left,k-1);
    		int rightNum = GetNodeNumKthLevel(root->_right,k-1);
    
    		return (leftNum+rightNum);
    	}
    
    	//求二叉树中叶子节点的个数
    	int GetLeafNodeNum(BinaryTreeNode<T>* root)
    	{
    		if(root == NULL)
    		{
    			return 0;
    		}
    
    		if(root->_left == NULL && root->_right == NULL)
    		{
    			return 1;
    		}
    		
    		int leftNum = GetLeafNodeNum(root->_left);
    		int rightNum = GetLeafNodeNum(root->_right);
    		return leftNum+rightNum;
    	}
    
    	//非递归 前序遍历
    	void PrevOrder_NonR()
    	{
    		stack<BinaryTreeNode<T>*> s; //栈里边全是指针
    		if (_root != NULL)
    		{
    			s.push(_root)  //头不空 头入栈
    		}
    		while (!s.empty())
    		{
    			BinaryTreeNode<T>* top = s.top();//取栈顶
    			s.pop();                         //出栈
    			cout << top->_data << " ";
    			if (_root->_left)              //左右访问
    			{
    				s.push(_root->_left);
    			}
    			if (_root->_right)
    			{
    				s.push(_root->_right);
    			}
    		}
    		cout << endl;
    	}
    
    	//非递归 中序遍历
    	void InOrder_NonR()
    	{
    		stack<BinaryTreeNode<T>*> s;
    		BinaryTreeNode<T>* cur = _root; //cur始终指向头
    		while (cur || !s.empty())
    		{
    			//就是说,将cur指向的所有左路都入栈
    			while (cur)
    			{
    				s.push(cur); //第一次是头入栈;
    				cur = cur->_left; //所有左边依次入栈
    			}
    
    			//中序遍历 现在访问左 在到右边
    			while (!s.empty())
    			{
    				BinaryTreeNode<T>* top = s.top();
    				s.pop();
    				cout << top->_data << " ";
    				cur = top->_right; //走右边
    			}
    		}
    	}
    
    	//非递归,后序遍历
    	void PostOrder_NonR()
    	{
    		stack<BinaryTreeNode<T>*> s;
    		BinaryTreeNode<T>* cur = _root;
    		BinaryTreeNode<T>* prevVisted = NULL;
    
    		while (cur || !s.empty())
    		{
    			while (cur)
    			{
    				s.push(cur);
    				cur = cur->_left;
    			}
    
    			BinaryTreeNode<T>* top = s.top();
    			if (top->_right == NULL || top->_right = prevVisted)
    			{
    				cout << top->_data << " ";
    				prevVisted = top;
    				s.pop();
    			}
    			else
    			{
    				cur = top->_right;
    			}
    		}
    		cout << endl;
    	}
    
    	//清除
    	void _Destroy(BinaryTreeNode<T>*& root)
    	{
    		if (root == NULL)
    		{
    			return;
    		}
    		if (root->_left == NULL || root->_right == NULL)
    		{
    			delete root;
    			root = NULL;
    			return;
    		}
    
    		_Destroy(root->_left);
    		_Destroy(root->_right);
    		delete root;
    	}
    
    protected:
    	BinaryTreeNode<T>* _CreateTree(const T* a,size_t size,size_t& index)
    	{
    		if(a[index] != '#' && index < size)	
    		{
    			BinaryTreeNode<T>* root = new BinaryTreeNode<T>(a[index]);
    			root->_left = _CreateTree(a,size,++index);//v  为神魔啊  有问题呢 加加不可以放后边
    			root->_right = _CreateTree(a,size,++index);	
                return root;
    		}
    		else
    		{
    			return NULL;
    		}
    	}
    
    public:
    	BinaryTreeNode<T>* _root;
    };
    
    测试用例:

    #include"BinaryTree.h"
    
    void Test()
    {
    	BinaryTreeNode<int>* _root = NULL;
    	int a[7] = {1,2,'#','#',3,'#','#'};
    	BinaryTree<int> s1(a,10);
    	cout<<"先序遍历"<<endl;
    	s1.PrveOrder(s1._root);
    	cout<<endl;
    	cout<<"中序遍历"<<endl;
    	s1.InOrder(s1._root);
    	cout<<endl;
    	cout<<"后序遍历"<<endl;
    	s1.PostOrder(s1._root);
    	cout<<endl;
    	cout<<"层序遍历"<<endl;
    	s1.LevelOrder(s1._root);
    	cout<<endl;
    	int size = 0;
    	//cout<<"Size:"<<s1.Size(s1._root,size)<<endl;
    	cout<<"Depth:"<<s1.Depth(s1._root)<<endl;
    	
    	cout<<"Find:"<<s1.Find(s1._root,1)<<endl;
    	cout<<"大小:"<<s1.GetNodeNum(s1._root)<<endl;
    
    	cout<<"第K层的节点数:"<<s1.GetNodeNumKthLevel(s1._root,2)<<endl;
    	cout<<"叶子节点数:"<<s1.GetLeafNodeNum(s1._root)<<endl;
    }
    
    int main()
    {
    	Test();
    	return 0;
    }



  • 相关阅读:
    c# mvc action 跳转方式
    where T : new() 的含义
    HTML5 Dataset data-属性
    EF6 教程
    C写的AES(ECB/PKCS5Padding)
    【转载】openwrt: Makefile 框架分析
    SCP 命令【转】
    HTTP协议详解(转载)
    bootstrap模板
    拖拽插件
  • 原文地址:https://www.cnblogs.com/melons/p/5791876.html
Copyright © 2020-2023  润新知