• python数据分析第二版:numpy


    一:Numpy

    # 数组和列表的效率问题,谁优谁劣
    
    # 1.循环遍历
    import numpy as np
    import time
    my_arr = np.arange(1000000)
    my_list = list(range(1000000))
    
    def arr_time(array):
        s = time.time()
        for _ in array:
            _ * 2
        e = time.time()
        return e - s
    
    def list_time(list):
        s = time.time()
        for _ in list:
            _ * 2
        e = time.time()
        return e - s
    
    ret1 = arr_time(my_arr)
    print("数组运行的时间是{}".format(ret1))
    ret2 = list_time(my_list)
    print("列表运行的时间是{}".format(ret2))
    
    # 结果
    数组运行的时间是0.2110121250152588   # 遍历,列表快
    列表运行的时间是0.04800271987915039
    
    # 2.自身扩容
    import numpy as np
    import time
    
    my_arr = np.arange(1000000)
    my_list = list(range(1000000))
    
    def arr_time(array):
        s = time.time()
        for _ in range(10):
            array * 2
        e = time.time()
        return e - s
    
    def list_time(list):
        s = time.time()
        for _ in range(10):
            list * 2
        e = time.time()
        return e - s
    
    ret1 = arr_time(my_arr)
    print("数组运行的时间是{}".format(ret1))
    ret2 = list_time(my_list)
    print("列表运行的时间是{}".format(ret2))
    # 结果
    数组运行的时间是0.018001317977905273  # 扩容,数组快
    列表运行的时间是0.2950167655944824

    numpy处理数据快的原因是:在一个连续的内存块中取存取数据。

    1.  numpy中的ndarray:一种多维的数组对象,是一种快速灵活的大数据容器。

    创建ndarray:数组的创建最简单的办法就是使用array函数,它接收一切序列型的对象,其中也包括数组。

    data = [1,2,3,4,5]
    arr1 = np.array(data)
    print(arr1)
    # [1,2,3,4,5]  将python的列表,转成数组
    data = [[1,2,3,4,5],[6,7,8,9,10]]
    arr2 = np.array(data)
    print(arr2)
    
    [[ 1  2  3  4  5]
     [ 6  7  8  9 10]]

    查看数组的维度和形状

    w1 = arr1.ndim  # 维度
    s1 = arr1.shape # 形状
    w2 = arr2.ndim
    s2 = arr2.shape
    print("数组arr1的维度是{},形状是{}".format(w1,s1))
    print("数组arr2的维度是{},形状是{}".format(w2,s2))
    数组arr1的维度是1,形状是(5,)
    数组arr2的维度是2,形状是(2, 5)

    其他形式的创建数组

    np.zeros(20)
    
    # 结果
    array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
           0., 0., 0.])
    
    np.zeros((3,6))
    # 结果 array([[0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]])

    np.ones(10)
    array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

    np.ones((3,6))
    array([[1., 1., 1., 1., 1., 1.],
           [1., 1., 1., 1., 1., 1.],
           [1., 1., 1., 1., 1., 1.]])

    np.arrange(10)是python中range的数组版本

    np.arange(10)
    #
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

    2  numpy中的ndarray的数据类型

    创建时候指定数据类型  

    data = [1,2,3,4,5]
    arr3 = np.array(data,dtype=np.float64)
    print(arr3.dtype)
    #
    float64

    数组数据类型转换

    data = [1,2,3,4,5]
    arr4 = np.array(data)
    print(arr4.dtype)
    # int32
    float_arr4 = arr4.astype(np.float64)
    print(float_arr4.dtype)
    # float64

    注意:浮点型,转为整形,小数点后面的数组,自动去除,类型与python中的取整。

    data = [1.1,2,1,3,1,4,1]
    arr5 = np.array(data)
    print(arr5.dtype)
    int_arr5 = arr5.astype(np.int32)
    print(int_arr5.dtype)
    # 
    float64
    int32
    print(int_arr5)
    #
    [1 2 1 3 1 4 1]

    注意:astype可以将某些全是数值类型的字符串转成数值形式  str = "123456"

    demo = ["1","2","3"]
    demo_str = np.array(data)
    new_demo = demo_str.astype(float)
    new_demo
    #
    array([1.1, 2. , 1. , 3. , 1. , 4. , 1. ])  # 结果很奇怪

    二:numpy数组的运算

    加减乘除

    arr6 = np.array([[1,2,3,4,5],[6,7,8,9,10]])
    arr6
    
    # 结果
    array([[ 1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10]])
    
    arr6 + arr6
    
    # 结果
    array([[ 2,  4,  6,  8, 10],
           [12, 14, 16, 18, 20]])
    
    arr6 - arr6
    
    # 结果
    array([[0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    
    arr6 * arr6
    
    # 结果
    array([[  1,   4,   9,  16,  25],
           [ 36,  49,  64,  81, 100]])
    
    1 / arr6
    
    # 结果
    array([[1.        , 0.5       , 0.33333333, 0.25      , 0.2       ],
           [0.16666667, 0.14285714, 0.125     , 0.11111111, 0.1       ]])

    数组之间的比值,产生布尔数组

    arr6
    array([[ 1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10]])
    
    arr7 = np.array([[5,4,1,2,3],[6,8,10,9,7]])
    arr7
    
    array([[ 5,  4,  1,  2,  3],
           [ 6,  8, 10,  9,  7]])
    
    
    arr6 > arr7
    
    # 结果
    array([[False, False,  True,  True,  True],
           [False, False, False, False,  True]])

    # 数组与常量进行加减乘除,或者数组之间的比较,叫做广播

    切片和索引

    一维数组的切片和索引

    # 一维数组的索引和切片  非常类似于python列表的操作
    arr1 = np.arange(10)
    arr1
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    arr1[0]
    0
    arr1[0:-1]
    array([0, 1, 2, 3, 4, 5, 6, 7, 8])

    注意:不同于列表的地方是:

    arr1[:] = 0  # 可以对切片进行改值,将范围内的所有元素改成统一值
    arr1
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    arr_slice = arr1[1:3]
    arr_slice
    array([0, 0])
    arr_slice[0] = 1   # 切片不是python字典中的浅拷贝,切片后的元素也是映射到源数组,因此改变切片的内容,也会影响源数组的内容
    arr1
    array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])

    注意:虽然会影响到源数组,通过复制切片,再进行修改就不会影响到源数组。

    arr_slice2 = arr1[1:3].copy()
    arr_slice2
    array([1, 0])
    arr_slice2[0] = 100
    arr1
    array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])

    高维数组的切片和索引:高维数组的索引,不在是数,而是一个数组

    二维数组

    arr2 = np.array([[1,3],[2,4]])
    arr2
    array([[1, 3],
           [2, 4]])
    arr2[0]
    array([1, 3])
    arr2[1]
    array([2, 4])
    arr2[1][0]
    2
    arr2[1][1]
    4

    三维数组

    arr3 = np.array([[[1,2,1],[3,4,3],[5,6,5]]])
    arr3
    
    array([[[1, 2, 1],
            [3, 4, 3],
            [5, 6, 5]]])
    
    arr3[0]
    
    array([[1, 2, 1],
           [3, 4, 3],
           [5, 6, 5]])
    
    arr3[1]
    ---------------------------------------------------------------------------
    IndexError                                Traceback (most recent call last)
    <ipython-input-100-cac0cac14f9a> in <module>
    ----> 1 arr3[1]
    
    IndexError: index 1 is out of bounds for axis 0 with size 1
    
    # 因为arr3不是这种结构[[  [],[],[]  ],[ [],[],[] ],[ [],[],[] ],[ [],[],[] ]]
    arr3[0] 只能取,第一个二维索引,arr3中也只有一个二维索引,1会越界。

    注意:arr3[0] 可以用标量和数组进行赋值

    arr3[0] = 1
    arr3
    array([[[1, 1, 1],
            [1, 1, 1],
            [1, 1, 1]]])
    arr3[0] = [[0,0,0],[0,0,0],[0,0,0]]
    arr3
    array([[[0, 0, 0],
            [0, 0, 0],
            [0, 0, 0]]])

    注意:三维数组的连续索引

    arr3[0][1] 
    array([0, 0, 0])
    
    arr3[0,1]  # 等价于上面一个
    array([0, 0, 0])

     二维数组的切片

    arr = np.array([[1,2,3],[4,5,6],[7,8,9],[9,8,7],[6,5,4],[3,2,1]])
    arr
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9],
           [9, 8, 7],
           [6, 5, 4],
           [3, 2, 1]])
    
    arr[:3]  # 这种形式的切片是按照x,也就是行,进行切片的。
    
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    arr = np.array([[1,2,3],[4,5,6],[7,8,9],[9,8,7],[6,5,4],[3,2,1]])
    arr
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9],
           [9, 8, 7],
           [6, 5, 4],
           [3, 2, 1]])
    
    arr[:3]
    
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    # 连续按照x轴,即行进行切,第二次切是对每一个一维数组进行切片。
    
    arr[:3,1:]
    array([[2, 3],
           [5, 6],
           [8, 9]])

     二维数组来说切片 [控制行,控制列]

    import numpy as np
    import time
    arr1 = np.array([[1,2,3],[4,5,6],[7,8,9]])
    arr1[1,:2]  # 第二行的前两列
    #结果
    array([4, 5])  
    arr1[:2,2]  # 第三列的前两行
    #结果
    array([3, 6])
    arr1 = np.array([[1,2,3],[4,5,6],[7,8,9]])
    arr1[:,1:]  # 所有行的第一列之后的所有  :表示所有
    # 结果
    array([[2, 3],
           [5, 6],
           [8, 9]])
    arr1[1:,:] # 所有列的第一行到所有
    # 结果
    array([[4, 5, 6],
           [7, 8, 9]])

     二维切片的赋值也会广播到所有元素

    arr1[1:,:] = 100
    arr1
    # 结果
    array([[  1,   2,   3],
           [100, 100, 100],
           [100, 100, 100]])

     布尔值索引

    arr1 = np.array(["a","b","c","d","e","f","h"])
    arr1
    # 结果
    array(['a', 'b', 'c', 'd', 'e', 'f', 'h'], dtype='<U1')
    
    data = np.random.randn(7,4)  # 生成指定维度的列表,randn函数返回一个或一组样本,具有标准正态分布
    data
    
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538],
           [ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])
    
    arr1 == "a"
    #结果
    array([ True, False, False, False, False, False, False])
    
    data[arr1=="a"]
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538]])  # 第一个为True,所以只显示第一行

     关于np.random随机生成数组的其他用法

    np.random.rand(4,3,2)   # 生成三维数组,4---包含四行,每行都是一个二维数组,3---包含三行,每个二维数组都是由三行一维数组组成,2---每个一维数组,包含二行,即二个元素。
    
    # 结果
    array([[[0.45843663, 0.30801374],
            [0.50365738, 0.49775572],
            [0.86671448, 0.83116069]],
    
           [[0.26553277, 0.06815584],
            [0.72355103, 0.65145712],
            [0.18559103, 0.77389285]],
    
           [[0.59710693, 0.4073068 ],
            [0.13812524, 0.16268339],
            [0.92289371, 0.45529381]],
    
           [[0.51111361, 0.63368562],
            [0.93192965, 0.08373171],
            [0.97425054, 0.53798492]]])
    
    np.random.rand(4,3,3)
    
    # 结果
    array([[[0.66847835, 0.96393834, 0.68099953],
            [0.27228911, 0.01407302, 0.1067194 ],
            [0.62624735, 0.58379371, 0.85244324]],
    
           [[0.15541881, 0.66438894, 0.92232019],
            [0.26811429, 0.13868821, 0.50579811],
            [0.55399624, 0.12154676, 0.06532324]],
    
           [[0.21546971, 0.10701104, 0.98175299],
            [0.5240603 , 0.58015531, 0.65979757],
            [0.4755814 , 0.34118265, 0.93017974]],
    
           [[0.87136945, 0.8724195 , 0.13122896],
            [0.84908535, 0.50701899, 0.24765703],
            [0.28119896, 0.76037353, 0.94389406]]])
    data[arr1!="a"]
    # 结果
    array([[ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])

     ~非得意思:cont = arr1 == "a"  ~cont就是条件取反的意思

    cont = arr1 != "a"
    data[cont]
    # 结果
    array([[ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])
    
    data[~cont]
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538]])

     布尔值的用处

    1.让整个数组里面所有小于0的元素全部变成0

    data
    
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538],
           [ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])
    
    
    data[data<0] =0
    data
    
    # 结果
    array([[0.58942085, 0.        , 0.        , 0.        ],
           [0.15429648, 1.56280897, 1.71407167, 0.        ],
           [1.88318536, 0.        , 0.22774029, 0.72447885],
           [0.        , 0.0250038 , 0.47380685, 1.67780702],
           [0.        , 0.6399932 , 0.        , 3.21059215],
           [0.82560976, 0.84780371, 1.34085735, 0.        ],
           [0.60466595, 0.64945024, 0.        , 0.        ]])

     &和的意思,类似于and:

    data
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538],
           [ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])
    
    # 将里面大于0小于1的数字变成0
    
    data[(data>0) & (data<1)] = 0
    data
    
    # 结果
    array([[0.        , 0.        , 0.        , 0.        ],
           [0.        , 1.56280897, 1.71407167, 0.        ],
           [1.88318536, 0.        , 0.        , 0.        ],
           [0.        , 0.        , 0.        , 1.67780702],
           [0.        , 0.        , 0.        , 3.21059215],
           [0.        , 0.        , 1.34085735, 0.        ],
           [0.        , 0.        , 0.        , 0.        ]])

     | 或的意思,类似于 or

    data
    
    # 结果
    array([[ 0.58942085, -0.68523013, -0.5892267 , -0.97875538],
           [ 0.15429648,  1.56280897,  1.71407167, -0.91513437],
           [ 1.88318536, -1.04312503,  0.22774029,  0.72447885],
           [-0.14408123,  0.0250038 ,  0.47380685,  1.67780702],
           [-0.85254544,  0.6399932 , -0.63439896,  3.21059215],
           [ 0.82560976,  0.84780371,  1.34085735, -0.54620446],
           [ 0.60466595,  0.64945024, -0.76053927, -0.4420415 ]])
    
    将小于0或者大于1的数修改为1
    
    data[(data<0) | (data>1)] = 1
    data
    # 结果
    array([[1.        , 1.        , 0.59208795, 1.        ],
           [1.        , 1.        , 1.        , 1.        ],
           [1.        , 0.0701599 , 1.        , 0.15396346],
           [1.        , 1.        , 1.        , 0.2735209 ],
           [1.        , 1.        , 1.        , 1.        ],
           [1.        , 1.        , 1.        , 0.06469213],
           [1.        , 1.        , 1.        , 1.        ]])

     花式索引

    np.empty()返回一个随机元素的矩阵,大小按照参数定义。不是字面意思上的空数组,需要自己调整参数。

    data = np.empty((8,4))  # 本意想生成8行4列的二维空数组
    data
    # 结果
    array([[9.34e-322, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000],
           [0.00e+000, 0.00e+000, 0.00e+000, 0.00e+000]])
    
    # 空数组需要手动调整
    
    for i in range(8):
        data[i] = 0
    
    data
    
    #结果
    array([[0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.]])

     索引数组:按照顺序返回结果

    for i in range(8):
        data[i] = i
    
    data
    # 结果
    
    array([[0., 0., 0., 0.],
           [1., 1., 1., 1.],
           [2., 2., 2., 2.],
           [3., 3., 3., 3.],
           [4., 4., 4., 4.],
           [5., 5., 5., 5.],
           [6., 6., 6., 6.],
           [7., 7., 7., 7.]])
    
    # 按照顺序取出,每一行
    data[[0,2,4,6]]   data[[索引值]]
    # 结果
    array([[0., 0., 0., 0.],
           [2., 2., 2., 2.],
           [4., 4., 4., 4.],
           [6., 6., 6., 6.]])
    # 另一种方式
    data[[i for i in range(len(data)) if i % 2 == 0]]
    data
    # 结果

     array([[0., 0., 0., 0.],
          [2., 2., 2., 2.],
         [4., 4., 4., 4.],
         [6., 6., 6., 6.]])

     多个索引数组:以二维为例,返回的是一个一维数组

    data = np.arange(32)
    data
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
           17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31])
    data = data.reshape(8,4)
    data
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19],
           [20, 21, 22, 23],
           [24, 25, 26, 27],
           [28, 29, 30, 31]])
    data[[0,2,4,6],[3,2,1,0]]
    array([ 3, 10, 17, 24])
    # 二维最终选出的数其实是 (0,3),(2,2),(4,1),(6,0)组成的一维数组

     数组的转置

    data = np.arange(15).reshape(3,5)
    data
    # 结果
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14]])
    
    data.T
    array([[ 0,  5, 10],
           [ 1,  6, 11],
           [ 2,  7, 12],
           [ 3,  8, 13],
           [ 4,  9, 14]])
    
    行变成列或列变行

    矩阵的內积,A*A^T 

    ret1 = np.dot(data,data.T)  3*5, 5*3 --- 3*3
    ret1
    array([[ 30,  80, 130],   # 30 = (0*0 + 1*1 + 2*2 + 3*3 + 4*4) 
           [ 80, 255, 430],
           [130, 430, 730]])
    ret2 = np.dot(data.T,data)  5*3 , 3*5 --- 5*5   # 內积的正确方法
    ret2
    array([[125, 140, 155, 170, 185],
           [140, 158, 176, 194, 212],
           [155, 176, 197, 218, 239],
           [170, 194, 218, 242, 266],
           [185, 212, 239, 266, 293]])

     高维数组的轴对换

    data = np.arange(16).reshape((2,2,4))
    data
    # 结果
    array([[[ 0,  1,  2,  3],
            [ 4,  5,  6,  7]],
    
           [[ 8,  9, 10, 11],
            [12, 13, 14, 15]]])
    
    data.transpose((1,0,2))
    data
    # 结果
    array([[[ 0,  1,  2,  3],
            [ 8,  9, 10, 11]],
    
           [[ 4,  5,  6,  7],
            [12, 13, 14, 15]]])
    
    解析:其中正确的应该是(0,1,2)分别表示(x,y,z)(1,0,2)表明x轴和y轴进行了调换
    
    那么导致索引值变化:
    data[0,0] --->data[0,0]
    data[0,1] --->data[1,0]
    data[1,0] --->data[0,1]
    data[1,1] --->data[1,1]
    
    data.transpose((2,1,0)) 表示x轴和z轴进行了变换。
    x轴和z后就牵扯到结构的变化和,原来的结构是2*2*4--二行二维数组,每个二维数组里面有两行一维数组,每个一维数组里面有四行数据。
    
    (2,2, 4) 的结构变成了 (4, 2, 2) 
    
    [
    [[],[]],
    [[],[]],
    [[],[]],
    [[],[]],
    
    ] 
    
    结构变化后,然后开始赋值,data[0][1][1]  = 5变成了 data[1][1][0]  = 5 
    
    [
    [[],[]],
    [[],[5]],
    [[],[]],
    [[],[]],
    
    ] 
    原来的data[1][1][0] = 12 变成了 data[0][1][1] = 12
    
    [
    [[],[12]],
    [[],[5]],
    [[],[]],
    [[],[]],    
    ] 
    以此类推的出变化后的值
    
    array([[[ 0,  1],
            [ 2,  3]],
    
           [[ 4,  5],
            [ 6,  7]],
    
           [[ 8,  9],
            [10, 11]],
    
           [[12, 13],
            [14, 15]]])

    总结:和Z轴相关的变换都需换换结构,然后在改变索引值。

     swapaxes的轴对换:简写模式  swapaxes(1,2)  就是y轴和z轴进行变换。data[0][1][0]的值就变成data[0][0][1]的值

    data = np.arange(0,16).reshape(2,2,4)
    data
    # 结果
    array([[[ 0,  1,  2,  3],
            [ 4,  5,  6,  7]],
    
           [[ 8,  9, 10, 11],
            [12, 13, 14, 15]]])
    
    data.swapaxes(1,2)
    # 结果
    array([[[ 0,  4],
            [ 1,  5],
            [ 2,  6],
            [ 3,  7]],
    
           [[ 8, 12],
            [ 9, 13],
            [10, 14],
            [11, 15]]])
    
    第一步,shape(2,2,4)经过y轴和z轴的变换,形状变成shape(2,4,2)---变形状
    
    【[[],
        [],
        [],
        []],
      [[],
       [],
       [],
       []]】
    
    第二步,值变换,data[0][1][0]的值变成data[0][0][1]的值,经过所有的值变换,得到结果---变值

    总结:轴变换的步骤,先根据函数(参数)变形状,然后变值

    2.通用函数:快速的元素级数组函数

      就是对ndarray的数据进行元素级 操作的函数,接收一个或多个标量值,并返回一个或多个标量值。ufunc

    sqrt函数  对每个元素进行二次开方操作 二次根号下

    data = np.arange(0,16)
    data
    # 结果
    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
    
    np.sqrt(data)
    # 结果
    array([0.        , 1.        , 1.41421356, 1.73205081, 2.        ,
           2.23606798, 2.44948974, 2.64575131, 2.82842712, 3.        ,
           3.16227766, 3.31662479, 3.46410162, 3.60555128, 3.74165739,
           3.87298335])

     exp函数:exp,高等数学里以自然常数e为底的指数函数;Exp:返回e的n次方,e是一个常数为2.71828;Exp 函数 返回 e(自然对数的底)的幂次方。

    np.exp(data)
    # 结果
    array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
           5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
           2.98095799e+03, 8.10308393e+03, 2.20264658e+04, 5.98741417e+04,
           1.62754791e+05, 4.42413392e+05, 1.20260428e+06, 3.26901737e+06])

     二元ufunc:接收两个数组参数

    x = np.random.randn(8)    
    x
    # 结果
    array([-2.15378687,  0.81808891,  1.03173227, -1.38834899, -0.25440583,
            0.15042907,  0.78186255, -1.56663501])
    
    y = np.random.randn(8)
    y
    # 结果
    array([ 0.99923527, -0.05346302,  0.36369126, -1.14881998,  1.13355945,
            0.37692407, -0.00560708,  0.24598121])
    
    np.maximum(x,y)
    # 结果
    array([ 0.99923527, -0.05346302,  0.36369126,  1.50986447,  1.32350916,
            0.37692407,  0.13424535,  0.44801383])

     # 函数方面未整理完全--TODO

    3.利用数据进行数据处理

      一般处理数组,需要循环数组,对每个元素进行处理,但是数组表达式可以代替循环的做法

    例如:在一组值(网格型)上计算函数sqrt(x^2 + y^2)。np.meshgrid函数接收两个一维数组,并产生两个二维矩阵(对应连个数组中的所有(x,y)对):

    import numpy as np
    points = np.arange(-5,5,0.01)
    points
    # 结果
    array([-5.0000000e+00, -4.9900000e+00, -4.9800000e+00, -4.9700000e+00,
           -4.9600000e+00, -4.9500000e+00, -4.9400000e+00, -4.9300000e+00,
           -4.9200000e+00, -4.9100000e+00, -4.9000000e+00, -4.8900000e+00,
           -4.8800000e+00, -4.8700000e+00, -4.8600000e+00, -4.8500000e+00,
           -4.8400000e+00, -4.8300000e+00, -4.8200000e+00, -4.8100000e+00,
           -4.8000000e+00, -4.7900000e+00, -4.7800000e+00, -4.7700000e+00,
           -4.7600000e+00, -4.7500000e+00, -4.7400000e+00, -4.7300000e+00,
           -4.7200000e+00, -4.7100000e+00, -4.7000000e+00, -4.6900000e+00,
           -4.6800000e+00, -4.6700000e+00, -4.6600000e+00, -4.6500000e+00,
           -4.6400000e+00, -4.6300000e+00, -4.6200000e+00, -4.6100000e+00,
           -4.6000000e+00, -4.5900000e+00, -4.5800000e+00, -4.5700000e+00,
           -4.5600000e+00, -4.5500000e+00, -4.5400000e+00, -4.5300000e+00,
           -4.5200000e+00, -4.5100000e+00, -4.5000000e+00, -4.4900000e+00,
           -4.4800000e+00, -4.4700000e+00, -4.4600000e+00, -4.4500000e+00,
           -4.4400000e+00, -4.4300000e+00, -4.4200000e+00, -4.4100000e+00,
           -4.4000000e+00, -4.3900000e+00, -4.3800000e+00, -4.3700000e+00,
           -4.3600000e+00, -4.3500000e+00, -4.3400000e+00, -4.3300000e+00,
           -4.3200000e+00, -4.3100000e+00, -4.3000000e+00, -4.2900000e+00,
           -4.2800000e+00, -4.2700000e+00, -4.2600000e+00, -4.2500000e+00,
           -4.2400000e+00, -4.2300000e+00, -4.2200000e+00, -4.2100000e+00,
           -4.2000000e+00, -4.1900000e+00, -4.1800000e+00, -4.1700000e+00,
           -4.1600000e+00, -4.1500000e+00, -4.1400000e+00, -4.1300000e+00,
           -4.1200000e+00, -4.1100000e+00, -4.1000000e+00, -4.0900000e+00,
           -4.0800000e+00, -4.0700000e+00, -4.0600000e+00, -4.0500000e+00,
           -4.0400000e+00, -4.0300000e+00, -4.0200000e+00, -4.0100000e+00,
           -4.0000000e+00, -3.9900000e+00, -3.9800000e+00, -3.9700000e+00,
           -3.9600000e+00, -3.9500000e+00, -3.9400000e+00, -3.9300000e+00,
           -3.9200000e+00, -3.9100000e+00, -3.9000000e+00, -3.8900000e+00,
           -3.8800000e+00, -3.8700000e+00, -3.8600000e+00, -3.8500000e+00,
           -3.8400000e+00, -3.8300000e+00, -3.8200000e+00, -3.8100000e+00,
           -3.8000000e+00, -3.7900000e+00, -3.7800000e+00, -3.7700000e+00,
           -3.7600000e+00, -3.7500000e+00, -3.7400000e+00, -3.7300000e+00,
           -3.7200000e+00, -3.7100000e+00, -3.7000000e+00, -3.6900000e+00,
           -3.6800000e+00, -3.6700000e+00, -3.6600000e+00, -3.6500000e+00,
           -3.6400000e+00, -3.6300000e+00, -3.6200000e+00, -3.6100000e+00,
           -3.6000000e+00, -3.5900000e+00, -3.5800000e+00, -3.5700000e+00,
           -3.5600000e+00, -3.5500000e+00, -3.5400000e+00, -3.5300000e+00,
           -3.5200000e+00, -3.5100000e+00, -3.5000000e+00, -3.4900000e+00,
           -3.4800000e+00, -3.4700000e+00, -3.4600000e+00, -3.4500000e+00,
           -3.4400000e+00, -3.4300000e+00, -3.4200000e+00, -3.4100000e+00,
           -3.4000000e+00, -3.3900000e+00, -3.3800000e+00, -3.3700000e+00,
           -3.3600000e+00, -3.3500000e+00, -3.3400000e+00, -3.3300000e+00,
           -3.3200000e+00, -3.3100000e+00, -3.3000000e+00, -3.2900000e+00,
           -3.2800000e+00, -3.2700000e+00, -3.2600000e+00, -3.2500000e+00,
           -3.2400000e+00, -3.2300000e+00, -3.2200000e+00, -3.2100000e+00,
           -3.2000000e+00, -3.1900000e+00, -3.1800000e+00, -3.1700000e+00,
           -3.1600000e+00, -3.1500000e+00, -3.1400000e+00, -3.1300000e+00,
           -3.1200000e+00, -3.1100000e+00, -3.1000000e+00, -3.0900000e+00,
           -3.0800000e+00, -3.0700000e+00, -3.0600000e+00, -3.0500000e+00,
           -3.0400000e+00, -3.0300000e+00, -3.0200000e+00, -3.0100000e+00,
           -3.0000000e+00, -2.9900000e+00, -2.9800000e+00, -2.9700000e+00,
           -2.9600000e+00, -2.9500000e+00, -2.9400000e+00, -2.9300000e+00,
           -2.9200000e+00, -2.9100000e+00, -2.9000000e+00, -2.8900000e+00,
           -2.8800000e+00, -2.8700000e+00, -2.8600000e+00, -2.8500000e+00,
           -2.8400000e+00, -2.8300000e+00, -2.8200000e+00, -2.8100000e+00,
           -2.8000000e+00, -2.7900000e+00, -2.7800000e+00, -2.7700000e+00,
           -2.7600000e+00, -2.7500000e+00, -2.7400000e+00, -2.7300000e+00,
           -2.7200000e+00, -2.7100000e+00, -2.7000000e+00, -2.6900000e+00,
           -2.6800000e+00, -2.6700000e+00, -2.6600000e+00, -2.6500000e+00,
           -2.6400000e+00, -2.6300000e+00, -2.6200000e+00, -2.6100000e+00,
           -2.6000000e+00, -2.5900000e+00, -2.5800000e+00, -2.5700000e+00,
           -2.5600000e+00, -2.5500000e+00, -2.5400000e+00, -2.5300000e+00,
           -2.5200000e+00, -2.5100000e+00, -2.5000000e+00, -2.4900000e+00,
           -2.4800000e+00, -2.4700000e+00, -2.4600000e+00, -2.4500000e+00,
           -2.4400000e+00, -2.4300000e+00, -2.4200000e+00, -2.4100000e+00,
           -2.4000000e+00, -2.3900000e+00, -2.3800000e+00, -2.3700000e+00,
           -2.3600000e+00, -2.3500000e+00, -2.3400000e+00, -2.3300000e+00,
           -2.3200000e+00, -2.3100000e+00, -2.3000000e+00, -2.2900000e+00,
           -2.2800000e+00, -2.2700000e+00, -2.2600000e+00, -2.2500000e+00,
           -2.2400000e+00, -2.2300000e+00, -2.2200000e+00, -2.2100000e+00,
           -2.2000000e+00, -2.1900000e+00, -2.1800000e+00, -2.1700000e+00,
           -2.1600000e+00, -2.1500000e+00, -2.1400000e+00, -2.1300000e+00,
           -2.1200000e+00, -2.1100000e+00, -2.1000000e+00, -2.0900000e+00,
           -2.0800000e+00, -2.0700000e+00, -2.0600000e+00, -2.0500000e+00,
           -2.0400000e+00, -2.0300000e+00, -2.0200000e+00, -2.0100000e+00,
           -2.0000000e+00, -1.9900000e+00, -1.9800000e+00, -1.9700000e+00,
           -1.9600000e+00, -1.9500000e+00, -1.9400000e+00, -1.9300000e+00,
           -1.9200000e+00, -1.9100000e+00, -1.9000000e+00, -1.8900000e+00,
           -1.8800000e+00, -1.8700000e+00, -1.8600000e+00, -1.8500000e+00,
           -1.8400000e+00, -1.8300000e+00, -1.8200000e+00, -1.8100000e+00,
           -1.8000000e+00, -1.7900000e+00, -1.7800000e+00, -1.7700000e+00,
           -1.7600000e+00, -1.7500000e+00, -1.7400000e+00, -1.7300000e+00,
           -1.7200000e+00, -1.7100000e+00, -1.7000000e+00, -1.6900000e+00,
           -1.6800000e+00, -1.6700000e+00, -1.6600000e+00, -1.6500000e+00,
           -1.6400000e+00, -1.6300000e+00, -1.6200000e+00, -1.6100000e+00,
           -1.6000000e+00, -1.5900000e+00, -1.5800000e+00, -1.5700000e+00,
           -1.5600000e+00, -1.5500000e+00, -1.5400000e+00, -1.5300000e+00,
           -1.5200000e+00, -1.5100000e+00, -1.5000000e+00, -1.4900000e+00,
           -1.4800000e+00, -1.4700000e+00, -1.4600000e+00, -1.4500000e+00,
           -1.4400000e+00, -1.4300000e+00, -1.4200000e+00, -1.4100000e+00,
           -1.4000000e+00, -1.3900000e+00, -1.3800000e+00, -1.3700000e+00,
           -1.3600000e+00, -1.3500000e+00, -1.3400000e+00, -1.3300000e+00,
           -1.3200000e+00, -1.3100000e+00, -1.3000000e+00, -1.2900000e+00,
           -1.2800000e+00, -1.2700000e+00, -1.2600000e+00, -1.2500000e+00,
           -1.2400000e+00, -1.2300000e+00, -1.2200000e+00, -1.2100000e+00,
           -1.2000000e+00, -1.1900000e+00, -1.1800000e+00, -1.1700000e+00,
           -1.1600000e+00, -1.1500000e+00, -1.1400000e+00, -1.1300000e+00,
           -1.1200000e+00, -1.1100000e+00, -1.1000000e+00, -1.0900000e+00,
           -1.0800000e+00, -1.0700000e+00, -1.0600000e+00, -1.0500000e+00,
           -1.0400000e+00, -1.0300000e+00, -1.0200000e+00, -1.0100000e+00,
           -1.0000000e+00, -9.9000000e-01, -9.8000000e-01, -9.7000000e-01,
           -9.6000000e-01, -9.5000000e-01, -9.4000000e-01, -9.3000000e-01,
           -9.2000000e-01, -9.1000000e-01, -9.0000000e-01, -8.9000000e-01,
           -8.8000000e-01, -8.7000000e-01, -8.6000000e-01, -8.5000000e-01,
           -8.4000000e-01, -8.3000000e-01, -8.2000000e-01, -8.1000000e-01,
           -8.0000000e-01, -7.9000000e-01, -7.8000000e-01, -7.7000000e-01,
           -7.6000000e-01, -7.5000000e-01, -7.4000000e-01, -7.3000000e-01,
           -7.2000000e-01, -7.1000000e-01, -7.0000000e-01, -6.9000000e-01,
           -6.8000000e-01, -6.7000000e-01, -6.6000000e-01, -6.5000000e-01,
           -6.4000000e-01, -6.3000000e-01, -6.2000000e-01, -6.1000000e-01,
           -6.0000000e-01, -5.9000000e-01, -5.8000000e-01, -5.7000000e-01,
           -5.6000000e-01, -5.5000000e-01, -5.4000000e-01, -5.3000000e-01,
           -5.2000000e-01, -5.1000000e-01, -5.0000000e-01, -4.9000000e-01,
           -4.8000000e-01, -4.7000000e-01, -4.6000000e-01, -4.5000000e-01,
           -4.4000000e-01, -4.3000000e-01, -4.2000000e-01, -4.1000000e-01,
           -4.0000000e-01, -3.9000000e-01, -3.8000000e-01, -3.7000000e-01,
           -3.6000000e-01, -3.5000000e-01, -3.4000000e-01, -3.3000000e-01,
           -3.2000000e-01, -3.1000000e-01, -3.0000000e-01, -2.9000000e-01,
           -2.8000000e-01, -2.7000000e-01, -2.6000000e-01, -2.5000000e-01,
           -2.4000000e-01, -2.3000000e-01, -2.2000000e-01, -2.1000000e-01,
           -2.0000000e-01, -1.9000000e-01, -1.8000000e-01, -1.7000000e-01,
           -1.6000000e-01, -1.5000000e-01, -1.4000000e-01, -1.3000000e-01,
           -1.2000000e-01, -1.1000000e-01, -1.0000000e-01, -9.0000000e-02,
           -8.0000000e-02, -7.0000000e-02, -6.0000000e-02, -5.0000000e-02,
           -4.0000000e-02, -3.0000000e-02, -2.0000000e-02, -1.0000000e-02,
           -1.0658141e-13,  1.0000000e-02,  2.0000000e-02,  3.0000000e-02,
            4.0000000e-02,  5.0000000e-02,  6.0000000e-02,  7.0000000e-02,
            8.0000000e-02,  9.0000000e-02,  1.0000000e-01,  1.1000000e-01,
            1.2000000e-01,  1.3000000e-01,  1.4000000e-01,  1.5000000e-01,
            1.6000000e-01,  1.7000000e-01,  1.8000000e-01,  1.9000000e-01,
            2.0000000e-01,  2.1000000e-01,  2.2000000e-01,  2.3000000e-01,
            2.4000000e-01,  2.5000000e-01,  2.6000000e-01,  2.7000000e-01,
            2.8000000e-01,  2.9000000e-01,  3.0000000e-01,  3.1000000e-01,
            3.2000000e-01,  3.3000000e-01,  3.4000000e-01,  3.5000000e-01,
            3.6000000e-01,  3.7000000e-01,  3.8000000e-01,  3.9000000e-01,
            4.0000000e-01,  4.1000000e-01,  4.2000000e-01,  4.3000000e-01,
            4.4000000e-01,  4.5000000e-01,  4.6000000e-01,  4.7000000e-01,
            4.8000000e-01,  4.9000000e-01,  5.0000000e-01,  5.1000000e-01,
            5.2000000e-01,  5.3000000e-01,  5.4000000e-01,  5.5000000e-01,
            5.6000000e-01,  5.7000000e-01,  5.8000000e-01,  5.9000000e-01,
            6.0000000e-01,  6.1000000e-01,  6.2000000e-01,  6.3000000e-01,
            6.4000000e-01,  6.5000000e-01,  6.6000000e-01,  6.7000000e-01,
            6.8000000e-01,  6.9000000e-01,  7.0000000e-01,  7.1000000e-01,
            7.2000000e-01,  7.3000000e-01,  7.4000000e-01,  7.5000000e-01,
            7.6000000e-01,  7.7000000e-01,  7.8000000e-01,  7.9000000e-01,
            8.0000000e-01,  8.1000000e-01,  8.2000000e-01,  8.3000000e-01,
            8.4000000e-01,  8.5000000e-01,  8.6000000e-01,  8.7000000e-01,
            8.8000000e-01,  8.9000000e-01,  9.0000000e-01,  9.1000000e-01,
            9.2000000e-01,  9.3000000e-01,  9.4000000e-01,  9.5000000e-01,
            9.6000000e-01,  9.7000000e-01,  9.8000000e-01,  9.9000000e-01,
            1.0000000e+00,  1.0100000e+00,  1.0200000e+00,  1.0300000e+00,
            1.0400000e+00,  1.0500000e+00,  1.0600000e+00,  1.0700000e+00,
            1.0800000e+00,  1.0900000e+00,  1.1000000e+00,  1.1100000e+00,
            1.1200000e+00,  1.1300000e+00,  1.1400000e+00,  1.1500000e+00,
            1.1600000e+00,  1.1700000e+00,  1.1800000e+00,  1.1900000e+00,
            1.2000000e+00,  1.2100000e+00,  1.2200000e+00,  1.2300000e+00,
            1.2400000e+00,  1.2500000e+00,  1.2600000e+00,  1.2700000e+00,
            1.2800000e+00,  1.2900000e+00,  1.3000000e+00,  1.3100000e+00,
            1.3200000e+00,  1.3300000e+00,  1.3400000e+00,  1.3500000e+00,
            1.3600000e+00,  1.3700000e+00,  1.3800000e+00,  1.3900000e+00,
            1.4000000e+00,  1.4100000e+00,  1.4200000e+00,  1.4300000e+00,
            1.4400000e+00,  1.4500000e+00,  1.4600000e+00,  1.4700000e+00,
            1.4800000e+00,  1.4900000e+00,  1.5000000e+00,  1.5100000e+00,
            1.5200000e+00,  1.5300000e+00,  1.5400000e+00,  1.5500000e+00,
            1.5600000e+00,  1.5700000e+00,  1.5800000e+00,  1.5900000e+00,
            1.6000000e+00,  1.6100000e+00,  1.6200000e+00,  1.6300000e+00,
            1.6400000e+00,  1.6500000e+00,  1.6600000e+00,  1.6700000e+00,
            1.6800000e+00,  1.6900000e+00,  1.7000000e+00,  1.7100000e+00,
            1.7200000e+00,  1.7300000e+00,  1.7400000e+00,  1.7500000e+00,
            1.7600000e+00,  1.7700000e+00,  1.7800000e+00,  1.7900000e+00,
            1.8000000e+00,  1.8100000e+00,  1.8200000e+00,  1.8300000e+00,
            1.8400000e+00,  1.8500000e+00,  1.8600000e+00,  1.8700000e+00,
            1.8800000e+00,  1.8900000e+00,  1.9000000e+00,  1.9100000e+00,
            1.9200000e+00,  1.9300000e+00,  1.9400000e+00,  1.9500000e+00,
            1.9600000e+00,  1.9700000e+00,  1.9800000e+00,  1.9900000e+00,
            2.0000000e+00,  2.0100000e+00,  2.0200000e+00,  2.0300000e+00,
            2.0400000e+00,  2.0500000e+00,  2.0600000e+00,  2.0700000e+00,
            2.0800000e+00,  2.0900000e+00,  2.1000000e+00,  2.1100000e+00,
            2.1200000e+00,  2.1300000e+00,  2.1400000e+00,  2.1500000e+00,
            2.1600000e+00,  2.1700000e+00,  2.1800000e+00,  2.1900000e+00,
            2.2000000e+00,  2.2100000e+00,  2.2200000e+00,  2.2300000e+00,
            2.2400000e+00,  2.2500000e+00,  2.2600000e+00,  2.2700000e+00,
            2.2800000e+00,  2.2900000e+00,  2.3000000e+00,  2.3100000e+00,
            2.3200000e+00,  2.3300000e+00,  2.3400000e+00,  2.3500000e+00,
            2.3600000e+00,  2.3700000e+00,  2.3800000e+00,  2.3900000e+00,
            2.4000000e+00,  2.4100000e+00,  2.4200000e+00,  2.4300000e+00,
            2.4400000e+00,  2.4500000e+00,  2.4600000e+00,  2.4700000e+00,
            2.4800000e+00,  2.4900000e+00,  2.5000000e+00,  2.5100000e+00,
            2.5200000e+00,  2.5300000e+00,  2.5400000e+00,  2.5500000e+00,
            2.5600000e+00,  2.5700000e+00,  2.5800000e+00,  2.5900000e+00,
            2.6000000e+00,  2.6100000e+00,  2.6200000e+00,  2.6300000e+00,
            2.6400000e+00,  2.6500000e+00,  2.6600000e+00,  2.6700000e+00,
            2.6800000e+00,  2.6900000e+00,  2.7000000e+00,  2.7100000e+00,
            2.7200000e+00,  2.7300000e+00,  2.7400000e+00,  2.7500000e+00,
            2.7600000e+00,  2.7700000e+00,  2.7800000e+00,  2.7900000e+00,
            2.8000000e+00,  2.8100000e+00,  2.8200000e+00,  2.8300000e+00,
            2.8400000e+00,  2.8500000e+00,  2.8600000e+00,  2.8700000e+00,
            2.8800000e+00,  2.8900000e+00,  2.9000000e+00,  2.9100000e+00,
            2.9200000e+00,  2.9300000e+00,  2.9400000e+00,  2.9500000e+00,
            2.9600000e+00,  2.9700000e+00,  2.9800000e+00,  2.9900000e+00,
            3.0000000e+00,  3.0100000e+00,  3.0200000e+00,  3.0300000e+00,
            3.0400000e+00,  3.0500000e+00,  3.0600000e+00,  3.0700000e+00,
            3.0800000e+00,  3.0900000e+00,  3.1000000e+00,  3.1100000e+00,
            3.1200000e+00,  3.1300000e+00,  3.1400000e+00,  3.1500000e+00,
            3.1600000e+00,  3.1700000e+00,  3.1800000e+00,  3.1900000e+00,
            3.2000000e+00,  3.2100000e+00,  3.2200000e+00,  3.2300000e+00,
            3.2400000e+00,  3.2500000e+00,  3.2600000e+00,  3.2700000e+00,
            3.2800000e+00,  3.2900000e+00,  3.3000000e+00,  3.3100000e+00,
            3.3200000e+00,  3.3300000e+00,  3.3400000e+00,  3.3500000e+00,
            3.3600000e+00,  3.3700000e+00,  3.3800000e+00,  3.3900000e+00,
            3.4000000e+00,  3.4100000e+00,  3.4200000e+00,  3.4300000e+00,
            3.4400000e+00,  3.4500000e+00,  3.4600000e+00,  3.4700000e+00,
            3.4800000e+00,  3.4900000e+00,  3.5000000e+00,  3.5100000e+00,
            3.5200000e+00,  3.5300000e+00,  3.5400000e+00,  3.5500000e+00,
            3.5600000e+00,  3.5700000e+00,  3.5800000e+00,  3.5900000e+00,
            3.6000000e+00,  3.6100000e+00,  3.6200000e+00,  3.6300000e+00,
            3.6400000e+00,  3.6500000e+00,  3.6600000e+00,  3.6700000e+00,
            3.6800000e+00,  3.6900000e+00,  3.7000000e+00,  3.7100000e+00,
            3.7200000e+00,  3.7300000e+00,  3.7400000e+00,  3.7500000e+00,
            3.7600000e+00,  3.7700000e+00,  3.7800000e+00,  3.7900000e+00,
            3.8000000e+00,  3.8100000e+00,  3.8200000e+00,  3.8300000e+00,
            3.8400000e+00,  3.8500000e+00,  3.8600000e+00,  3.8700000e+00,
            3.8800000e+00,  3.8900000e+00,  3.9000000e+00,  3.9100000e+00,
            3.9200000e+00,  3.9300000e+00,  3.9400000e+00,  3.9500000e+00,
            3.9600000e+00,  3.9700000e+00,  3.9800000e+00,  3.9900000e+00,
            4.0000000e+00,  4.0100000e+00,  4.0200000e+00,  4.0300000e+00,
            4.0400000e+00,  4.0500000e+00,  4.0600000e+00,  4.0700000e+00,
            4.0800000e+00,  4.0900000e+00,  4.1000000e+00,  4.1100000e+00,
            4.1200000e+00,  4.1300000e+00,  4.1400000e+00,  4.1500000e+00,
            4.1600000e+00,  4.1700000e+00,  4.1800000e+00,  4.1900000e+00,
            4.2000000e+00,  4.2100000e+00,  4.2200000e+00,  4.2300000e+00,
            4.2400000e+00,  4.2500000e+00,  4.2600000e+00,  4.2700000e+00,
            4.2800000e+00,  4.2900000e+00,  4.3000000e+00,  4.3100000e+00,
            4.3200000e+00,  4.3300000e+00,  4.3400000e+00,  4.3500000e+00,
            4.3600000e+00,  4.3700000e+00,  4.3800000e+00,  4.3900000e+00,
            4.4000000e+00,  4.4100000e+00,  4.4200000e+00,  4.4300000e+00,
            4.4400000e+00,  4.4500000e+00,  4.4600000e+00,  4.4700000e+00,
            4.4800000e+00,  4.4900000e+00,  4.5000000e+00,  4.5100000e+00,
            4.5200000e+00,  4.5300000e+00,  4.5400000e+00,  4.5500000e+00,
            4.5600000e+00,  4.5700000e+00,  4.5800000e+00,  4.5900000e+00,
            4.6000000e+00,  4.6100000e+00,  4.6200000e+00,  4.6300000e+00,
            4.6400000e+00,  4.6500000e+00,  4.6600000e+00,  4.6700000e+00,
            4.6800000e+00,  4.6900000e+00,  4.7000000e+00,  4.7100000e+00,
            4.7200000e+00,  4.7300000e+00,  4.7400000e+00,  4.7500000e+00,
            4.7600000e+00,  4.7700000e+00,  4.7800000e+00,  4.7900000e+00,
            4.8000000e+00,  4.8100000e+00,  4.8200000e+00,  4.8300000e+00,
            4.8400000e+00,  4.8500000e+00,  4.8600000e+00,  4.8700000e+00,
            4.8800000e+00,  4.8900000e+00,  4.9000000e+00,  4.9100000e+00,
            4.9200000e+00,  4.9300000e+00,  4.9400000e+00,  4.9500000e+00,
            4.9600000e+00,  4.9700000e+00,  4.9800000e+00,  4.9900000e+00])
    
    x,y = np.meshgrid(points,points)
    x
    # 结果
    array([[-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99],
           [-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99],
           [-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99],
           ...,
           [-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99],
           [-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99],
           [-5.  , -4.99, -4.98, ...,  4.97,  4.98,  4.99]])
    
    z = np.sqrt(x ** 2 + y ** 2)
    z
    # 结果
    array([[7.07106781, 7.06400028, 7.05693985, ..., 7.04988652, 7.05693985,
            7.06400028],
           [7.06400028, 7.05692568, 7.04985815, ..., 7.04279774, 7.04985815,
            7.05692568],
           [7.05693985, 7.04985815, 7.04278354, ..., 7.03571603, 7.04278354,
            7.04985815],
           ...,
           [7.04988652, 7.04279774, 7.03571603, ..., 7.0286414 , 7.03571603,
            7.04279774],
           [7.05693985, 7.04985815, 7.04278354, ..., 7.03571603, 7.04278354,
            7.04985815],
           [7.06400028, 7.05692568, 7.04985815, ..., 7.04279774, 7.04985815,
            7.05692568]])
    
    import matplotlib.pyplot as plt
    plt.imshow(z,cmap=plt.cm.gray)
    plt.title("Image plot of $sqrt{x^2 + y ^2}$")
    View Code

     

    将逻辑表达式转换为数组运算

    xarray = np.array([1.1,1.2,1.3,1.4,1.5])
    yarray = np.array([2.1,2.2,2.3,2.4,2.5])
    cond = np.array([True,False,True,True,False])
    # 根据cond的值来选xarray和yarray的值
    result = [(x if c else y) for x,y,c in zip(xarray,yarray,cond)]
    result
    # 结果
    [1.1, 2.2, 1.3, 1.4, 2.5]

    np.where对上面的功能进行简写,但是上面的不能运用于多维数组

    np.where(cond,xarray,yarray)
    # 结果
    array([1.1, 2.2, 1.3, 1.4, 2.5])

    np.where的第二个和第三个参数不必是数组,也可以是标量,分析工作中,where通常用于根据另一个数组而产生一个新的数组,,假设有一个随机数据组成的矩阵,你希望将所有的正值替换为2,所有的负值替换为-2,利用np.where很好解决

    data = np.random.randn(4,4)
    data
    # 结果
    array([[-0.17893171, -1.27250145, -0.45939414,  0.30944654],
           [ 0.35907625, -0.5218144 ,  0.818055  , -0.41448322],
           [-0.93634932,  0.98570265, -0.01616765, -0.56027282],
           [-0.40607618,  1.39596637,  0.2368549 ,  1.58591689]])
    
    data > 0
    # 结果
    array([[False, False, False,  True],
           [ True, False,  True, False],
           [False,  True, False, False],
           [False,  True,  True,  True]])
    
    np.where(data>0,2,-2)  True就是2,False就是-2
    
    array([[-2, -2, -2,  2],
           [ 2, -2,  2, -2],
           [-2,  2, -2, -2],
           [-2,  2,  2,  2]])

    将数组中所有正数全部换成2:这种方式确实省去了循环数组进行改值,效率很高

    np.where(data>0,2,data)
    # 结果
    array([[-0.17893171, -1.27250145, -0.45939414,  2.        ],
           [ 2.        , -0.5218144 ,  2.        , -0.41448322],
           [-0.93634932,  2.        , -0.01616765, -0.56027282],
           [-0.40607618,  2.        ,  2.        ,  2.        ]])

     数学和统计方法

      sum mean std等聚合计算

    例如:随机生成一些符合正态分布的数据,然后进行聚类统计

    data = np.random.randn(5,4)
    data
    # 结果
    array([[-0.06079722,  1.49824203, -0.80957561,  0.02303306],
           [-0.96135543, -0.99023163, -2.29943668,  0.02939615],
           [-0.85931239,  0.55478495,  0.0246531 , -1.35531409],
           [ 1.4930319 , -0.51001952, -0.47922101,  0.70338996],
           [-1.14822113,  1.38053279, -0.61358326, -0.38187168]])
    
    data.mean()
    # 结果
    -0.23809378534483533
    np.mean(data)
    # 结果
    -0.23809378534483533
    data.sum()
    # 结果
    -4.761875706896706
    np.sum(data)
    # 结果
    -4.761875706896706
    data.mean(axis=0)  # axis = 0 表示跨行---即每一列
    # 结果
    array([-0.30733085,  0.38666172, -0.83543269, -0.19627332])
    data.sum(axis=1)   # axis = 1 表示跨列---即每一行
    # 结果
    array([ 0.65090226, -4.2216276 , -1.63518844,  1.20718134, -0.76314327])
    
    

      不管是mean和sum计算,最终的结果都是少一维的数组

     一维的样本累加  

    data = np.array([1,2,3,4,5,6,7,8,9,10])
    data
    # array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
    data.cumsum()  # 功能是将样本逐渐累加
    # 1 = 1;3 = 1 + 2;6 = 1 + 2 + 3;
    array([ 1,  3,  6, 10, 15, 21, 28, 36, 45, 55], dtype=int32)

    多维的样本累加

    data = np.arange(1,10).reshape(3,3)
    data
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    data.cumsum()
    # 结果
    array([ 1,  3,  6, 10, 15, 21, 28, 36, 45], dtype=int32)  # 全部累加
    data.cumsum(axis
    =0) # 每列累加 # 结果 array([[ 1, 2, 3], [ 5, 7, 9], [12, 15, 18]], dtype=int32)
    data.cumsum(axis
    =1) # 每行累加 # 结果 array([[ 1, 3, 6], [ 4, 9, 15], [ 7, 15, 24]], dtype=int32)

     

    用于布尔型的数组方法

    # TODO

    数组排序

    sort

    一维数组排序

    data = np.random.randn(5)
    data
    # 结果
    array([-2.5325336 , -0.45898654, -0.35112763, -0.93824495, -0.6494557 ])
    data.sort()
    data
    # 结果
    array([-2.5325336 , -0.93824495, -0.6494557 , -0.45898654, -0.35112763])

     2019-09-23-19:37:54

    多维数组排序:sort

    data = np.random.randn(5,3)
    data
    array([[-1.09656539, -1.44675032, -0.49202197],
           [ 0.37282188, -0.24748695,  0.02384063],
           [ 0.46740851,  1.10011835,  0.47564148],
           [ 0.57882475, -2.20542035,  0.17290702],
           [ 0.55513993, -0.35427358, -2.03757406]])
    data.sort(0)
    data
    array([[-1.09656539, -2.20542035, -2.03757406],
           [ 0.37282188, -1.44675032, -0.49202197],
           [ 0.46740851, -0.35427358,  0.02384063],
           [ 0.55513993, -0.24748695,  0.17290702],
           [ 0.57882475,  1.10011835,  0.47564148]])
    np.sort(data,axis=0)
    data
    array([[-1.09656539, -2.20542035, -2.03757406],
           [ 0.37282188, -1.44675032, -0.49202197],
           [ 0.46740851, -0.35427358,  0.02384063],
           [ 0.55513993, -0.24748695,  0.17290702],
           [ 0.57882475,  1.10011835,  0.47564148]])

    axis = 1排序结果:

    array([[ 0.16578703,  0.07492019, -0.97846794],
           [-0.18209471, -0.41217471, -0.60299124],
           [-1.72009426, -0.44879286, -1.6406782 ],
           [ 1.7511948 , -0.20265756,  0.82688453],
           [-0.47502325, -0.52784722, -1.52997592]])
    
    np.sort(data,axis=1)
    array([[-0.97846794,  0.07492019,  0.16578703],
           [-0.60299124, -0.41217471, -0.18209471],
           [-1.72009426, -1.6406782 , -0.44879286],
           [-0.20265756,  0.82688453,  1.7511948 ],
           [-1.52997592, -0.52784722, -0.47502325]])

     # 数组进行排序后就已经更改了数组的结构,数组变成了排序好的结构

    一维数组的唯一值查找方法:也可理解为去重

    data = np.array([1,2,3,4,5,4,3,2,1,0])
    data
    array([1, 2, 3, 4, 5, 4, 3, 2, 1, 0])
    np.unique(data) # 去重后并返回排序好的数组
    array([0, 1, 2, 3, 4, 5])

    成员是否在数组里面的判断方法

    data = np.array([1,2,3,4,5,4,3,2,1,0])
    data
    array([1, 2, 3, 4, 5, 4, 3, 2, 1, 0])
    ret = np.in1d(data,[3,4,5])  
    ret # 返回一个bool值的列表
    array([False, False, False, False, False,  True,  True,  True,  True,
            True])

    
    

    数组文件的输入和输出

      numpy可以读取磁盘上的文本和二进制数据。np.save,np.load两个函数,默认下,数组是以未压缩的原始二进制格式保存在.npy的文件中。

    a = np.array([1,2,3])
    b = np.array([4,5,6])
    c = np.array([7,8,9])
    
    np.savez("many",a=a,b=b,c=c)  # 关键字参数传递参数
    
    ret = np.load("many.npz")
    # ret类似一个字典形式
    ret
    <numpy.lib.npyio.NpzFile at 0x5dda080>
    ret['a']
    array([1, 2, 3])

    线性代数

      numpy提供了dot函数,用来让两个矩阵进行乘法,

    x = np.array([[1,2,3],[4,5,6]])
    y = np.array([[7,8],[9,10],[11,12]]) 
    
    # 2*3  3 *2 ---- 2 * 2
    
    ret = np.dot(x,y)
    ret
    
    array([[ 58,  64],
           [139, 154]])

     二维矩阵 * 一维矩阵(大小合适)

    x = np.array([[1,2,3],[4,5,6]])
    y = np.array([7,8,9])
    
    y
    y.shape    # 一维数组只有行,没有列
    
    # 结果
    (3,)  3 * 1
    
    ret = np.dot(x,y) 2*3  * 3*1 = 2*1
    ret
    # 结果
    
    array([ 50, 122])

     矩阵的转置,矩阵的逆

    data = np.random.randn(5,5)
    data
    array([[-0.66722861, -1.05166739,  0.50078389,  0.12101523, -1.79648742],
           [ 1.39744908,  0.52359195, -1.72793681,  0.85379089,  1.31061423],
           [-0.97876769, -0.45461206,  1.30106165,  1.24189733,  0.09226485],
           [-0.05682579, -0.86258199,  0.15000168,  0.13101571, -0.83373897],
           [-0.91637877, -0.7502237 ,  0.19909396,  0.24339183,  1.89803093]])
    from numpy.linalg import inv,qr
    data_r = inv(data) # 矩阵的逆矩阵
    data_r
    array([[-1.76904786, -0.2303984 ,  0.17920536,  2.35016865, -0.49167585],
           [ 0.4604562 ,  0.06423869,  0.12409186, -1.50670415, -0.27641049],
           [-1.5185419 , -0.58246668,  0.4536423 ,  1.57608382, -0.36483338],
           [ 0.40719248,  0.45835402,  0.51499641, -0.38190467, -0.12388313],
           [-0.56503165, -0.0835249 ,  0.02194552,  0.42277667,  0.2343783 ]])
    np.dot(data,data_r)
    array([[ 1.00000000e+00,  6.43952042e-17,  6.35430438e-17,
            -2.23554197e-16, -8.50732362e-17],
           [ 4.93729662e-18,  1.00000000e+00, -5.08010725e-18,
             3.01746183e-16,  1.16513398e-16],
           [-3.28852246e-16,  1.57394623e-16,  1.00000000e+00,
             2.13695858e-17, -6.72574187e-17],
           [-3.73875165e-17,  2.04305881e-17, -1.55255260e-17,
             1.00000000e+00,  8.39231877e-18],
           [-4.56471514e-17,  1.45263310e-16, -1.80718066e-18,
            -1.44115115e-16,  1.00000000e+00]])

     

     伪随机数的生成

      标准正太分布的数据样本

    # TODO

  • 相关阅读:
    halcon应用案例探究
    Halcon中模板匹配方法的总结归纳
    halcon开发必读
    全局Threshold和动态阈值分割Dyn_Threshold的应用场景
    halcon电路断裂检测
    halcon之 distance_transform
    VS调试不能进入断点,提示当前不会命中断点还未为文档加载任何符号
    .net reactor使用教程(一)——界面各功能说明(转)
    (转) 开运算opening_circle和闭运算closing_circle的异同
    Win10系统安装UEFI+GPT配置
  • 原文地址:https://www.cnblogs.com/meloncodezhang/p/11564151.html
Copyright © 2020-2023  润新知