• 数学期望


    数学期望

    • X 为随机变量,它不会出现在函数的具体表示中,而是在抽象的表示中,也就是说会出现在(E(X)),这个X不会出现在$E(X) = $的右侧,在右侧中X要对应的使用x来替代。在P,E中放的一定是随机变量,是大写的字母,这才符合概率论。
    • 密度函数对R的积分为1。
    • 离散的情况不会使用到积分,但是在连续的情况一定会使用到积分,所有如果我们有了一个密度函数,则暗示着是连续的,如果没有则是离散的;这也为我们记忆一些公式提供了方便,我们首先考虑记忆密度函数,如果这个分布是离散的,如泊松分布,则记忆分布函数。
    • 连续性数学期望(E(X) = int_{-infty}^{infty}{xf(x)}),数学期望为随机变量乘以密度函数,在右侧X转为x。
    • 泊松分布是离散的,因为泊松分布表示的是事件发生的次数,而次数是离散的,所有在推(E(X))的时候我们使用离散的数学期望公式,分布函数为(P(X) = {lambda^{k}over{k!}}lambda^{k})
    • 指数分布是两件事情发生的平均间隔时间,时间是连续变量,所以指数分布是一种连续随机变量的分布,正态分布也是连续的。
    • 均匀分布,不要参考书上的,均匀分布的概率密度函数就是

    [f(x) = egin{cases} {1 over S_D} & a < x < b \ 0 & others end{cases} ]

  • 相关阅读:
    SQL带参数拼接
    ASP.NET+ashx+jQuery动态添加删除表格
    ASP.NET中常用重置数据的方法
    多表联合查询
    zTree在Asp.Net中的使用
    ASP.NET中常用方法
    DropDownList
    (转)一个form表单实现提交多个action
    svn简单用法
    每日三问
  • 原文地址:https://www.cnblogs.com/megachen/p/9926348.html
Copyright © 2020-2023  润新知