这是一篇国外的文章,介绍如何通过 WebRTC、OpenCV 和 WebSocket 技术实现在 Web 浏览器上的人脸识别,架构在 Jetty 之上。
实现的效果包括:
还能识别眼睛
人脸识别的核心代码:
页面:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | <div> <video id= "live" width= "320" height= "240" autoplay style= "display: inline;" ></video> <canvas width= "320" id= "canvas" height= "240" style= "display: inline;" ></canvas> </div> <script type= "text/javascript" > var video = $( "#live" ).get()[0]; var canvas = $( "#canvas" ); var ctx = canvas.get()[0].getContext( '2d' ); navigator.webkitGetUserMedia( "video" , function (stream) { video.src = webkitURL.createObjectURL(stream); }, function (err) { console.log( "Unable to get video stream!" ) } ) timer = setInterval( function () { ctx.drawImage(video, 0, 0, 320, 240); }, 250); </script> |
后台:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | public class FaceDetection { private static final String CASCADE_FILE = "resources/haarcascade_frontalface_alt.xml" ; private int minsize = 20 ; private int group = 0 ; private double scale = 1.1 ; /** * Based on FaceDetection example from JavaCV. */ public byte [] convert( byte [] imageData) throws IOException { // create image from supplied bytearray IplImage originalImage = cvDecodeImage(cvMat( 1 , imageData.length,CV_8UC1, new BytePointer(imageData))); // Convert to grayscale for recognition IplImage grayImage = IplImage.create(originalImage.width(), originalImage.height(), IPL_DEPTH_8U, 1 ); cvCvtColor(originalImage, grayImage, CV_BGR2GRAY); // storage is needed to store information during detection CvMemStorage storage = CvMemStorage.create(); // Configuration to use in analysis CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE)); // We detect the faces. CvSeq faces = cvHaarDetectObjects(grayImage, cascade, storage, scale, group, minsize); // We iterate over the discovered faces and draw yellow rectangles around them. for ( int i = 0 ; i < faces.total(); i++) { CvRect r = new CvRect(cvGetSeqElem(faces, i)); cvRectangle(originalImage, cvPoint(r.x(), r.y()), cvPoint(r.x() + r.width(), r.y() + r.height()), CvScalar.YELLOW, 1 , CV_AA, 0 ); } // convert the resulting image back to an array ByteArrayOutputStream bout = new ByteArrayOutputStream(); BufferedImage imgb = originalImage.getBufferedImage(); ImageIO.write(imgb, "png" , bout); return bout.toByteArray(); } } |
详细的实现细节请阅读英文原文: