• 吴恩达+neural-networks-deep-learning+第二周作业


    Logistic Regression with a Neural Network mindset v4

    简单用logistic实现了猫的识别,logistic可以被看做一个简单的神经网络结构,下面是主要代码:

    1.

    import numpy as np
    import matplotlib.pyplot as plt
    import h5py
    import scipy
    from PIL import Image
    from scipy import ndimage
    from lr_utils import load_dataset
    
    %matplotlib inline
    

    2.

    ### START CODE HERE ### (≈ 3 lines of code)
    m_train = train_set_x_orig.shape[0]
    m_test = test_set_x_orig.shape[0]
    num_px = train_set_x_orig.shape[1]
    ### END CODE HERE ###
    
    print ("Number of training examples: m_train = " + str(m_train))
    print ("Number of testing examples: m_test = " + str(m_test))
    print ("Height/Width of each image: num_px = " + str(num_px))
    print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
    print ("train_set_x shape: " + str(train_set_x_orig.shape))
    print ("train_set_y shape: " + str(train_set_y.shape))
    print ("test_set_x shape: " + str(test_set_x_orig.shape))
    print ("test_set_y shape: " + str(test_set_y.shape))

    3.数据预处理过程

    # Reshape the training and test examples
    
    ### START CODE HERE ### (≈ 2 lines of code)
    train_set_x_flatten = train_set_x_orig.reshape(-1,train_set_x_orig.shape[1]*train_set_x_orig.shape[2]*3).T
    test_set_x_flatten = test_set_x_orig.reshape(-1,test_set_x_orig.shape[1]*test_set_x_orig.shape[2]*3).T
    ### END CODE HERE ###
    
    print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
    print ("train_set_y shape: " + str(train_set_y.shape))
    print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
    print ("test_set_y shape: " + str(test_set_y.shape))
    print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))
    注意:此处,不可用(num_px*num_px*3 ,-1),因为reshape默认 以行分割,就是说我在确定一个reshape之后(M,N)现在我读取原数组按行读取,写入数组的时候也是按行写入的,所以我原数组的行是一幅图像,那么reshape数组的行也应该是一个图像,所以要写成,train_set_x_orig.reshape(-1,train_set_x_orig.shape[1]*train_set_x_orig.shape[2]*3),而不是把样本数量当做行,那就乱了!
     

    4.

    train_set_x = train_set_x_flatten/255.
    test_set_x = test_set_x_flatten/255.

    5.

    def propagate(w, b, X, Y):
        """
        Implement the cost function and its gradient for the propagation explained above
    
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of size (num_px * num_px * 3, number of examples)
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    
        Return:
        cost -- negative log-likelihood cost for logistic regression
        dw -- gradient of the loss with respect to w, thus same shape as w
        db -- gradient of the loss with respect to b, thus same shape as b
        
        Tips:
        - Write your code step by step for the propagation. np.log(), np.dot()
        """
        
        m = X.shape[1]
        
        # FORWARD PROPAGATION (FROM X TO COST)
        ### START CODE HERE ### (≈ 2 lines of code)
        A = sigmoid(np.dot(w.T,X)+b)                                    # compute activation
        cost = -1/m*((np.dot(Y,np.log(A).T))+(np.dot(1-Y,np.log(1-A).T)))                                 # compute cost
        ### END CODE HERE ###
        
        # BACKWARD PROPAGATION (TO FIND GRAD)
        ### START CODE HERE ### (≈ 2 lines of code)
        dw = 1/m*np.dot(X,(A-Y).T)
        db = 1/m*np.sum(A-Y)
        ### END CODE HERE ###
    
        assert(dw.shape == w.shape)
        assert(db.dtype == float)
        cost = np.squeeze(cost)
        assert(cost.shape == ())
        
        grads = {"dw": dw,
                 "db": db}
        
        return grads, cost
    

      

    6.

    # GRADED FUNCTION: optimize
    
    def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
        """
        This function optimizes w and b by running a gradient descent algorithm
        
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of shape (num_px * num_px * 3, number of examples)
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- True to print the loss every 100 steps
        
        Returns:
        params -- dictionary containing the weights w and bias b
        grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
        costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
        
        Tips:
        You basically need to write down two steps and iterate through them:
            1) Calculate the cost and the gradient for the current parameters. Use propagate().
            2) Update the parameters using gradient descent rule for w and b.
        """
        
        costs = []
        
        for i in range(num_iterations):
            
            
            # Cost and gradient calculation (≈ 1-4 lines of code)
            ### START CODE HERE ### 
            grads, cost = propagate(w,b,X,Y)
            ### END CODE HERE ###
            
            # Retrieve derivatives from grads
            dw = grads["dw"]
            db = grads["db"]
            
            # update rule (≈ 2 lines of code)
            ### START CODE HERE ###
            w = w-learning_rate*dw
            b = b-learning_rate*db
            ### END CODE HERE ###
            
            # Record the costs
            if i % 100 == 0:
                costs.append(cost)
            
            # Print the cost every 100 training examples
            if print_cost and i % 100 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
        
        params = {"w": w,
                  "b": b}
        
        grads = {"dw": dw,
                 "db": db}
        
        return params, grads, costs
    

      

    7.

    # GRADED FUNCTION: predict
    
    def predict(w, b, X):
        '''
        Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
        
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of size (num_px * num_px * 3, number of examples)
        
        Returns:
        Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
        '''
        
        m = X.shape[1]
        Y_prediction = np.zeros((1,m))
        w = w.reshape(X.shape[0], 1)
        
        # Compute vector "A" predicting the probabilities of a cat being present in the picture
        ### START CODE HERE ### (≈ 1 line of code)
        A = sigmoid(np.dot(w.T,X)+b)
        ### END CODE HERE ###
        
        #########
        Y_prediction=A>0.5
        Y_prediction=Y_prediction.astype(float)
        #########
        
        for i in range(A.shape[1]):
            
            # Convert probabilities A[0,i] to actual predictions p[0,i]
            ### START CODE HERE ### (≈ 4 lines of code)
            pass
            ### END CODE HERE ###
        
        assert(Y_prediction.shape == (1, m))
        
        return Y_prediction
    

    用了一个向量化解决了循环问题,很开心!

    8.

    # GRADED FUNCTION: model
    
    def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
        """
        Builds the logistic regression model by calling the function you've implemented previously
        
        Arguments:
        X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
        Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
        X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
        Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
        num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
        learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
        print_cost -- Set to true to print the cost every 100 iterations
        
        Returns:
        d -- dictionary containing information about the model.
        """
        
        ### START CODE HERE ###
        
        # initialize parameters with zeros (≈ 1 line of code)
        w, b = initialize_with_zeros(X_train.shape[0])
    
        # Gradient descent (≈ 1 line of code)
        parameters, grads, costs = optimize(w, b , X_train , Y_train , num_iterations , learning_rate , print_cost = False)
        
        # Retrieve parameters w and b from dictionary "parameters"
        w = parameters["w"]
        b = parameters["b"]
        
        # Predict test/train set examples (≈ 2 lines of code)
        Y_prediction_test = predict(w,b,X_test)
        Y_prediction_train = predict(w,b,X_train)
    
        ### END CODE HERE ###
    
        # Print train/test Errors
        print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
        print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
    
        
        d = {"costs": costs,
             "Y_prediction_test": Y_prediction_test, 
             "Y_prediction_train" : Y_prediction_train, 
             "w" : w, 
             "b" : b,
             "learning_rate" : learning_rate,
             "num_iterations": num_iterations}
        print(d["costs"])
        return d
    

    如果3的代码写反了,就变成34%的预测结果了,所以千万要注意细节!

  • 相关阅读:
    超前进位加法器
    Xilinx ISE 12.3 LED测试程序
    位图文件(BMP)格式以及Linux下C程序实现
    SPB16.3安装系列指导
    Debian6显卡驱动安装
    深入浅出之正则表达式
    一个在台积电工作3年的工程师写给学弟学妹们的信
    Debian下解决MP3标题乱码
    ubuntu下安装usbblaster(更新)
    乘法器的Verilog HDL实现
  • 原文地址:https://www.cnblogs.com/mdumpling/p/7670112.html
Copyright © 2020-2023  润新知