• 动态规划-背包问题


    // 最优原则:不管前面的策略如何,此后的决策是是基于当前状态(由上一次决策产生)的最优决策。
    // 当最优决策序列中包含最优决策子序列时,可建立动态规划递归方法。
    // (有些问题的递归式不一定能保证最优原则,因此在求解时有必要对它进行验证。若不能保持最优原则,则不可应用动态规划方法。)
    // 在得到最优解的递归式之后,需要执行回溯以构造最优解。
    // 缺点:如果不努力地去避免重复计算,递归程序的复杂性将非常可观。
    // 方案:如果在递归程序中解决了重复计算问题时,复杂性将急剧下降。
    // 递归方程也可用迭代方程来求解,这很自然地避免了重复计算。迭代方程虽然具有相同的复杂性,不需要附加的递归栈空间,因此更快一些。

    参考博客:

    1、动态规划之01背包问题(最易理解的讲解)

    2、0-1背包问题--动态规划算法

    3、背包问题  递归方法

    问题描述:
       给定n种物品和一背包,物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品(物品不能分割),使得装入背包中物品的总价值最大?

    分析:
      设f(i,j)为装入背包中的最大总价值,其中i是前i个物品,j是指背包剩余的承重,不是总承重
      1、把这个问题抽象成找到最优数组问题,x[0],x[1],x[2],x[3].....是一个01序列,其中1表示装入,0表示不装入。
      2、假设当前状态找到的最优解序列是x[0],x[1],x[2],x[3]...x[j],能使总价值最大。
         对于第j个物品是否装入,需要进行比较
          1)当w[j]>load,当这个物品的重量大于包剩余承重时,则无法装入,此时最大总价值等于前i-1个的最大总价值
                   则  f(i,j)=f(i-1,j)
          2)当w[j]<=load时,
              则需要比较两个值,f(i,j)=max{f(i-1,j-w[i])+v[i] , f(i-1,j)}
              假如要装入第i个物品的话,则需要花掉w[i]的承重,则对于前i-1个物品来说,总价值是f(i-1,j-w[i])+v[i]
              假如不装入的话,总价值是f(i-1,j)
              取两者的较大值。
       上面的每个式子都包含了子序列,可以采用动态规划的方法解。
     
       ******下面是另外一种顺序。
             
             
     
     
        *******
        3、采用递归和非递归方式解答。
     
    程序(非递归):

    有编号分别为a,b,c,d,e的五件物品,它们的重量分别是6,4,3,5,7,它们的价值分别是3,7,6,6,5,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

    采用填表法

    名称 weight value 0 1 2 3

    4

    5 6 7 8 9 10
    a 6 3  0  0  0  0  0  0  3  3  3  3  3
    b 4 7  0  0  0  0  7  7  7  7  7  7  10
    c 3 6  0  0  0  6  7  7  7  13  13 13  13
    d 5 6  0  0  0  6  7  7  7  13  13  13  13
    e 7 5  0  0  0  6  7  7  7  13  13  13  13

    只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

    首先要明确这张表是从上往下,从左到右生成的。(****这里和参考的那篇文章正好相反)

     这张表的填写的规律:

      1、先填写第0行的数据   if(load>w[i])  f(0,j)=v[i]    else  f(0,j)=0;

      2、从上往下依次填写,f(i,j)=max{f(i-1,j-w[i])+v[i]  ,  f(i-1,j)}

         比如c10  (第c行第10列)  f(2,10)=  max {f(1,10)    ,   f(1,10-6)+6}  ->  max{10  ,  7+6}  =  13 。

      3、最大总价值自然就是   f(n-1,c)。

        public static void main(String[] args) {
            int[] weights={6,4,3,5,7};
            int[] values={3,7,6,6,5};
            boolean [] selected=new boolean[weights.length];
            System.out.println(getMaxReverse(weights, values, weights.length, 10));
            System.out.println(getMax(selected, weights, values, 1, 10));
            System.out.println(getMax(weights, values, 10));
        }
        /**
         * 背包问题第一步:获得动态公式
         * f(i,j)=Max{f(i-1,j-Mi)+Pi,f(i-1,j)}
         * f(i,j)表示前i件物品放在承重j的背包中的最大价值
         * Mi是第i件物品的重量,Pi是第i件物品的价值
         */
        public static int getMaxReverse(int [] weights,int[] values,int index,int load)
        {
            if(index==0 || load==0) return 0;
            if(weights[index-1]>load)//不选择当前
            {
                return getMaxReverse(weights, values, index-1, load);
            }
            else
            {
                //选择当前
                int m1=getMaxReverse(weights, values, index-1, load-weights[index-1])+values[index-1];
                //不选择当前
                int m2=getMaxReverse(weights, values, index-1, load);
                return Math.max(m1, m2);
            }
        }
        
      //在递归里面确定装了哪些物品不靠谱
    public static int getMax(boolean[] selected,int [] weights,int[] values,int index,int load) { if(index==weights.length) return weights[index-1]>load?0:values[index-1]; if(weights[index-1]>load) { selected[index-1]=false; return getMax(selected, weights, values, index+1, load); } else { int v1=getMax(selected, weights, values, index+1, load); int v2=getMax(selected, weights, values, index+1, load-weights[index-1])+values[index-1]; if(v1>v2) { selected[index-1]=false; return v1; } else { selected[index-1]=true; return v2; } } } /**
        非递归解法
      */
    public static int getMax(int [] weights,int[] values,int load) { //新建数组用于存放数据 //load+1的作用是取索引方便 int len=weights.length; int[][] maxSum=new int[len][load+1]; //第一步初始化第0行 for(int i=0;i<load+1;i++) { maxSum[0][i]=weights[0]>i?0:values[0]; } //从第1行到第n-1行 for(int i=1;i<len;i++) { for(int j=0;j<load+1;j++) { if(j>=weights[i]) maxSum[i][j]=Math.max(maxSum[i-1][j], maxSum[i-1][j-weights[i]]+values[i]); else maxSum[i][j]=maxSum[i-1][j]; } } for(int i=0;i<len;i++) System.out.println(Arrays.toString(maxSum[i])); //输出选择的物品 int temp=load; for(int i=len-1;i>0;i--) { if(maxSum[i][temp]!=maxSum[i-1][temp]) { System.out.println("取了第"+(i+1)+"件物品 重量"+weights[i]+" 价值"+values[i]); temp-=weights[i]; } } //返回 return maxSum[len-1][load]; }
  • 相关阅读:
    kubernetes(七)二进制安装-worker节点安装
    kubernetes(六)二进制安装-master节点安装
    B树
    Nginx反向代理无法达到效果原因
    AVL树
    平衡二叉搜索树
    二叉搜索树
    二叉树
    js-day06-jQuery事件和DOM操作-练习题
    js-day05-JSON-jQuery初体验
  • 原文地址:https://www.cnblogs.com/maydow/p/4814744.html
Copyright © 2020-2023  润新知