• opencv


    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行。
    step 2: 生成正负样品的描述文件

    正样品描述文件
    find positive_boosted -iname "*.bmp" -exec echo {} 1 0 0 20 20 ; > face.info
    生成
    positive_boosted/face00244.bmp 1 0 0 20 20
    positive_boosted/face00177.bmp 1 0 0 20 20
    positive_boosted/face01533.bmp 1 0 0 20 20
    positive_boosted/face01542.bmp 1 0 0 20 20
    positive_boosted/face00733.bmp 1 0 0 20 20
    positive_boosted/face01708.bmp 1 0 0 20 20
    positive_boosted/face01625.bmp 1 0 0 20 20

     其中的pos_image/是相对路径名,后面紧接着的是文件名,1代表一个文件,0 0 24 24表示这个文件的2个顶点位置坐标。保存退出即ok。

    负样品描述文件
    find negative_boosted -iname *.bmp > non_face.txt
    生成  
    negative_boosted/face01542.bmp
    negative_boosted/face00733.bmp
    negative_boosted/face01708.bmp
    negative_boosted/face01625.bmp

    step 3: 生成vec文件
    opencv_createsamples -vec face.vec -info face.txt -bg non_face.txt  -w 20 -h 20 -num 2429
    其中的-vec是指定后面输出vec文件的文件名,-info指定正样本描述文件,-bg指定负样本描述文件,-w和-h分别指正样本的宽和高,-num表示正样本的个数。执行完该命令后就会在当前目录下生产一个face.vec文件了。

    step 4: 开始训练
    首先在当前目录下新建一个xml文件夹用于存放生成的.xml文件。
    opencv_haartraining  -data xml -vec face.vec -bg non_face.txt -npos 500 -nneg 500 -w 20 -h 20 -nstages 20 -nsplits 2 -minhitrate 0.999 -maxfalsealarm 0.5

    opencv_traincascade (新的命令)
     其中
        -data为输出xml中间文件的位置;
        -vec 正样品文件名
        -bg  负样本文件名
        -nsplits 1表示使用简单的stump classfier分类。
        -mode (default|all) all表示使用haar特征集的种类既有垂直的,又有45度角旋转的; default只是垂直的.
        -npos  正样本数
        -nneg    负样本
        -minhitrate 最小命中率,即训练目标准确度。
        -maxfalsealarm最大虚警(误检率),每一层训练到这个值小于0.5时训练结束,进入下一层训练

        在实际训练时,为了节约时间,调小了npos,nneg

        会产生xml.xml文件,可以利用所得到的分类器进行测试了。

    step 5: 合并训练所产生的xml文件
       生成多个

  • 相关阅读:
    CI框架 QQ接口(第三方登录接口PHP版)
    linux定时任务的设置
    WEB服务器:Apache、Tomcat、JBoss、WebLogic、Websphere、IIS的区别与关系
    php专业面试总结
    php常用数学函数
    UVA 1428 Ping pong
    UVA 11988 Broken Keyboard (a.k.a. Beiju Text)
    UVA 11991 Easy Problem from Rujia Liu?
    UVA 11995 I Can Guess the Data Structure!
    UVA 10375 Choose and divide
  • 原文地址:https://www.cnblogs.com/maxpak/p/5169315.html
Copyright © 2020-2023  润新知