• 关于$mathcal{D}(0,1)$上的一个有趣结论


    【转载请注明出处】http://www.cnblogs.com/mashiqi

    2017/02/20

    在$mathcal{D}(0,1)$上取定$varphi_0 in mathcal{D}(0,1)$满足$int_0^1 varphi_0(x) mathrm{d}x = 1$。令$$phi_{varphi}(x) overset{Delta}{=} varphi(x) - int_0^1 varphi(t) mathrm{d}t cdot varphi_0(x), ~ ext{where}~ varphi in mathcal{D}(0,1).$$则我们有$$forall varphi in mathcal{D}(0,1), ~ ext{we have}~ phi_{varphi}(x) in mathcal{D}(0,1) ~ ext{and}~ Phi_{varphi}(x) overset{Delta}{=} int_0^x phi_{varphi}(t) in mathcal{D}(0,1).$$

    我们应该注意到$$forall phi in mathcal{D}(0,1), phi in mathcal{D}(0,1) Rightarrow phi' in mathcal{D}(0,1)$$但上述关系一般不能反过来,即从$phi in mathcal{D}(0,1)$一般是得不到$int_0^x phi(t)mathrm{d}t in mathcal{D}(0,1)$的。但是上面构造出来的$phi_{varphi}$既满足$phi_{varphi}(x) in mathcal{D}(0,1)$又满足$int_0^x phi_{varphi}(t) in mathcal{D}(0,1).$这个结论还挺有趣。

  • 相关阅读:
    客户端加锁
    三次握手
    ForkJoinTask
    主从Reactor多线程模型
    Happen-before
    Enum
    Java 8
    Netty
    分布式一致性算法
    VisualStudio 2013 快捷键
  • 原文地址:https://www.cnblogs.com/mashiqi/p/6418351.html
Copyright © 2020-2023  润新知