概述
Redis是基于内存存储,常用于数据的缓存,所以Redis提供了对键的过期时间的设置,实现了几种淘汰机制便于适应各种场景。
设置过期时间
我们可以在设置键时设置expire time,也可以在运行时给存在的键设置剩余的生存时间,不设置则默认为-1,设置为-1时表示永久存储。
Redis清除过期Key的方式
定期删除 + 惰性删除
定期删除
Redis设定每隔100ms随机
抽取设置了过期时间的key,并对其进行检查,如果已经过期则删除。
为什么是随机抽取? 因为如果存储了大量数据,全部遍历一遍是非常影响性能的!
惰性删除
每次获取key时会对key进行判断是否还存活,如果已经过期了则删除。
注意:Redis中过期的key并不会马上删除,因为定期删除可能正好没抽取到它,我们也没有访问它触发惰性删除
Redis内存淘汰机制
思考一下,如果定期删除漏掉了很多过期的key,而我们也没有再去访问它,如果不加处理,很可能导致内存耗尽。
Redis配置文件中可以设置maxmemory,内存的最大使用量,到达限度时会执行内存淘汰机制
。
配置
redis.conf 配置文件中配置最大可用内存
// 设置Redis 最大可用内存为 1024mb maxmemory 1024mb
命令操作
//获取设置的Redis能使用的最大内存大小 127.0.0.1:6379> config get maxmemory
//设置Redis最大占用内存大小为1024M
127.0.0.1:6379> config set maxmemory 1024mb
Redis中的内存淘汰机制
没有配置时,默认为noeviction
不驱逐(删除)数据
名称 | 描述 |
---|---|
noeviction | 当内存不足写入新数据时,写入操作会报错,同时不删除数据 |
volatile-lru | 从 已设置过期时间 的数据集中挑选 最近最少使用 的 Key 淘汰 |
volatile-ttl | 从 已设置过期时间 的数据集中挑选 将要过期 的 Key 淘汰 |
volatile-random | 从 已设置过期时间 的数据集中挑选 任意 Key 淘汰 |
volatile-lfu | 从 已设置过期时间 的数据集中挑选 最不经常 使用的 Key 淘汰 |
allkeys-lru | 当内存不足写入新数据时淘汰 最近最少使用 的 Key |
allkeys-random | 当内存不足写入新数据时随机选择 任意 Key 淘汰 |
allkeys-lfu | 当内存不足写入新数据时移除 最不经常使用 的 Key |
- volatile为前缀的策略都是从 已过期的数据集 中进行淘汰。
- allkeys为前缀的策略都是面向 所有key 进行淘汰。
- LRU(Least Recently Used)最近最少使用的。
- LFU(Least Frequently Used)最不常用的。
- 它们的触发条件都是Redis使用的内存达到阈值时。
内存淘汰机制设置获取修改
redis.conf 配置文件中配置最大可用内存
// 设置Redis 淘汰机制为 volatile-lfu maxmemory-policy volatile-lfu
命令操作
//获取设置的Redis内存淘汰机制 127.0.0.1:6379> config get maxmemory-policy
//设置Redis内存淘汰机制
127.0.0.1:6379> config set maxmemory-policy volatile-lfu
LRU 算法
概念
LRU(Least Recently Used)
,最近最少使用,是一种缓存置换算法,其核心思想是:如果一个数据在最近一段时间内没有被用到,那么将来被使用的可能性也很小,所以就可以被淘汰掉。
实现原理
实现 LRU
算法除了需要 key/value 字典外,还需要附加一个链表,链表中的元素按照一定的顺序进行排列。当空间满的时候,会踢掉链表尾部的元素,当字典某个元素被访问时,它在链表中的位置会被移动到表头,所以链表的元素排列顺序就是元素最近被访问的时间顺序。
位于链表尾部的元素就是不被重用的元素,所以会被踢掉。位于表头的元素是刚被使用过的,因此暂时不会被踢。
下面使用 PHP 来实现一个简单的 LRU 算法。
<?php
class LRUCache
{
private $cache = [];
private $maxSize = 0;
function __construct($size)
{
// 缓存最大存储数量
$this->maxSize = $size;
}
public function set($key, $value)
{
// 如果存在,就先删除,然后在开头插入
if (isset($this->cache[$key])) {
unset($this->cache[$key]);
}
// 长度检查,超长则删除尾部元素
if (count($this->cache) >= $this->maxSize) {
array_pop($this->cache);
}
// 头部插入元素
$this->cache = [$key=>$value] + $this->cache;
}
public function get($key)
{
$resultValue = null;
if (isset($this->cache[$key])) {
$resultValue = $this->cache[$key];
// 移动到头部
unset($this->cache[$key]);
$this->cache = [$key=>$resultValue] + $this->cache;
}
return $resultValue;
}
public function getAll()
{
return $this->cache;
}
}
$cache = new LRUCache(3);
$cache->set('a', 1);
$cache->set('b', 2);
$cache->set('c', 3);
var_dump($cache->getAll());
$cache->set('d', 4);
var_dump($cache->getAll());
LRU 在 redis 中的实现
Redis 使用了一种近似 LRU算法,之所以不使用 LRU 算法,是因为其需要消耗大量的额外内存。
redis 为了实现近似 LRU 算法,给每个 key 增加了一个 24 bit的字段,用于保存最后一次被访问的时间。
Redis维护了一个24位时钟,可以简单理解为当前系统的时间戳,每隔一定时间会更新这个时钟。每个key对象内部同样维护了一个24位的时钟,当新增key对象的时候会把系统的时钟赋值到这个内部对象时钟。比如我现在要进行LRU,那么首先拿到当前的全局时钟,然后再找到内部时钟与全局时钟距离时间最久的(差最大)进行淘汰,这里值得注意的是全局时钟只有24位,按秒为单位来表示才能存储194天,所以可能会出现key的时钟大于全局时钟的情况,如果这种情况出现那么就两个相加而不是相减来求最久的key。
struct redisServer { pid_t pid; char *configfile; //全局时钟 unsigned lruclock:LRU_BITS; ... };
typedef struct redisObject { unsigned type:4; unsigned encoding:4; /* key对象内部时钟 */ unsigned lru:LRU_BITS; int refcount; void *ptr; } robj;
近似的 LRU 算法实际原理是 维护一个候选池(大小16),第一次选取 5 个(默认值)key 放到池中,随后每次选取的 key 值只有 访问时间(与系统时钟)间隔 大于 池中最小访问时间间隔的 才会被放到 池中,直到放满,如果有新加入的,则移除间隔时间最小的 key,当需要淘汰时,则直接从池中选取时间间隔最大(最久没用被调用)的进行淘汰。
LRU 和 近似 LRU 效果对比
下图是常规LRU淘汰策略与Redis随机样本取一键淘汰策略的对比,浅灰色表示已经删除的键,深灰色表示没有被删除的键,绿色表示新加入的键,越往上表示键加入的时间越久。从图中可以看出,在redis 3中,设置样本数为10的时候能够很准确的淘汰掉最久没有使用的键,与常规LRU基本持平。
LFU 算法
概念
LFU(Least Frequently Used)
,它的核心思想是 如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小,所有就可以被淘汰掉。
实现原理
根据 key 的最近访问频率进行淘汰,很少被访问的优先被淘汰,被访问多的则留下来。
下面使用 PHP 实现 LFU 算法
class LFUCache
{
private $cache = [];
private $maxSize = 0;
// 访问次数 key=>count
private $lfu = [];
function __construct($size)
{
// 缓存最大存储数量
$this->maxSize = $size;
}
public function set($key, $value)
{
// 如果存在,就更新访问次数+1
if (isset($this->cache[$key])) {
$this->lfu[$key] += 1;
}
// 长度检查,超长则删除最久访问数据
$this->cleanup();
// 插入元素, 更新访问次数
$this->cache[$key] = $value;
if (!isset($this->lfu[$key])) {
$this->lfu[$key] = 1;
}
}
public function cleanup()
{
if (count($this->cache) >= $this->maxSize) {
asort($this->lfu);
$k = array_keys($this->lfu)[0];
unset($this->cache[$k]);
unset($this->lfu[$k]);
}
return true;
}
public function get($key)
{
$resultValue = null;
if (isset($this->cache[$key])) {
$resultValue = $this->cache[$key];
// 更新访问时间
$this->lfu[$key] += 1;
}
return $resultValue;
}
public function getAll()
{
return $this->cache;
}
}
$cache = new LFUCache(3);
$cache->set('a', 1);
$cache->set('b', 2);
$cache->set('c', 3);
var_dump($cache->getAll());
$cache->get('a');
$cache->set('d', 4);
var_dump($cache->getAll());
LFU 在 redis 中的实现
LFU 是在 Redis4.0 后出现的,LRU 的最近最少使用实际上并不精确,考虑下面的情况,如果在|处删除,那么A距离的时间最久,但实际上A的使用频率要比B频繁,所以合理的淘汰策略应该是淘汰B。LFU 就是为应对这种情况而生的。
A~~A~~A~~A~~A~~A~~A~~A~~A~~A~~~|
B~~~~~B~~~~~B~~~~~B~~~~~~~~~~~B|
LFU 把原来的 key 对象的内部时钟的 24 位分成两部分,前16位还代表时钟,后8位代表一个计数器。
16 位的情况下如果还按照秒为单位就会导致不够用,所以一般这里以时钟为单位。而后8位表示当前 key 对象的访问频率,8 位只能代表255,但是redis 并没有采用线性上升的方式,而是通过一个复杂的公式,通过配置两个参数来调整数据的递增速度。
下图从左到右表示 key 的命中次数,从上到下表示影响因子,在影响因子为 100 的条件下,经过 10M 次命中才能把后8位值加满到255.
# +--------+------------+------------+------------+------------+------------+
# | factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
# +--------+------------+------------+------------+------------+------------+
# | 0 | 104 | 255 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 1 | 18 | 49 | 255 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 10 | 10 | 18 | 142 | 255 | 255 |
# +--------+------------+------------+------------+------------+------------+
# | 100 | 8 | 11 | 49 | 143 | 255 |
# +--------+------------+------------+------------+------------+------------+
uint8_t LFULogIncr(uint8_t counter) {
if (counter == 255) return 255;
double r = (double)rand()/RAND_MAX;
double baseval = counter - LFU_INIT_VAL;
if (baseval < 0) baseval = 0;
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
return counter;
}
配置参数
lfu-log-factor 10
lfu-decay-time 1
上面说的情况是 key 一直被命中的情况,如果一个 key 经过几分钟没有被命中,那么后8位的值是需要递减几分钟,具体递减几分钟根据衰减因子
lfu-decay-time
来控制
unsigned long LFUDecrAndReturn(robj *o) {
unsigned long ldt = o->lru >> 8;
unsigned long counter = o->lru & 255;
unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0;
if (num_periods)
counter = (num_periods > counter) ? 0 : counter - num_periods;
return counter;
}
上面递增和衰减都有对应参数配置,那么对于新分配的 key 呢?如果新分配的 key 计数器开始为0,那么很有可能在内存不足的时候直接就给淘汰掉了,所以默认情况下新分配的 key 的后 8 位计数器的值为5(可配置),防止因为访问频率过低而直接被删除。
低 8 位我们描述完了,那么高16位的时钟是用来干嘛的呢?目前我的理解是用来衰减低8位的计数器的,就是根据这个时钟与全局时钟进行比较,如果过了一定时间(做差)就会对计数器进行衰减。