• windows10 64bit 下的tensorflow 安装及demo


     

    目前流行的深度学习库有Caffe,Keras,Theano,本文采用谷歌开源的曾用来制作AlphaGo的深度学习系统Tensorflow。

    1:安装Tensorflow

    最早TensorFlow只支持mac和Linux系统,目前也支持windows系统,但要求python3.5 (64bit)版本。TensorFlow有cpu和gpu版本,由于本文使用服务器是NVIDIA显卡,因此安装gpu版本,在cmd命令行键入

    pip install --upgrade tensorflow-gpu

    如果出现错误“Cannot remove entries from nonexistent file”,执行以下命令

    “pip install --upgrade -I setuptools”,安装成功出现以下界面

    2:安装CUDA库

    用gpu来运行Tensorflow还需要配置CUDA和cuDnn库,

    用以下link下载win10(64bit)版本CUDA安装包,大小约为1.2G https://developer.nvidia.com/cuda-downloads

    安装cuda_8.0.61_win10.exe,完成后配置系统变量,在系统变量中的CUDA_PATH中,加上三个路径, C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0

    C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0in

    C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0inlibx64

    3:安装cuDnn库

    用以下link下载cuDnn库

    https://developer.nvidia.com/cudnn

    下载解压后,为了在运行tensorflow的时候也能将这个库加载进去,我们要将解压后的文件拷到CUDA对应的文件夹下C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0

    4:测试安装

    在Pycharm新建一个py文件键入

    import tensorflow as tf

    hello = tf.constant('Hello world, TensorFlow!')

    sess = tf.Session()

    print(sess.run(hello))

    如果能够输出'Hello, TensorFlow!'像下面这样就代表配置成功了。

    1: 导入必要的模块

    import sys

    import cv2

    import numpy as np

    import tensorflow as tf

    2: 定义CNN的基本组件

    按照LeNet5 的定义,采用32*32 图像输入,CNN的基本组件包括卷积C1,采样层S1、卷积C2,采样层S2、全结合层1、分类层2

    3:训练CNN

    将输入图像缩小至32*32大小,采用opencv中的resize函数

    其变换参数有

     

    CV_INTER_NN - 最近邻插值, 

    CV_INTER_LINEAR - 双线性插值 (缺省使用) 

    CV_INTER_AREA - 使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现。当图像放大时,类似于 CV_INTER_NN 方法.. 

    CV_INTER_CUBIC - 立方插值. 

    output=cv2.resize(img,(32,32),interpolation=cv2.INTER_CUBIC)

    核心代码如下:

    class CNNetwork:

        NUM_CLASSES = 2 #分两类

    IMAGE_SIZE = 28

    IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3

     

    def inference(images_placeholder, keep_prob):

        def weight_variable(shape):

          initial = tf.truncated_normal(shape, stddev=0.1)

          return tf.Variable(initial)

        def bias_variable(shape):

          initial = tf.constant(0.1, shape=shape)

          return tf.Variable(initial)

        def conv2d(x, W):

          return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

        def max_pool_2x2(x):

          return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],

                                strides=[1, 2, 2, 1], padding='SAME')

        x_image = tf.reshape(images_placeholder, [-1, 28, 28, 1])

        with tf.name_scope('conv1') as scope:

            W_conv1 = weight_variable([5, 5, 3, 32])

            b_conv1 = bias_variable([32])

            h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

        with tf.name_scope('pool1') as scope:

            h_pool1 = max_pool_2x2(h_conv1)

        with tf.name_scope('conv2') as scope:

            W_conv2 = weight_variable([5, 5, 32, 64])

            b_conv2 = bias_variable([64])

            h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

        with tf.name_scope('pool2') as scope:

            h_pool2 = max_pool_2x2(h_conv2)

        with tf.name_scope('fc1') as scope:

            W_fc1 = weight_variable([7*7*64, 1024])

            b_fc1 = bias_variable([1024])

            h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

            h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

            h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

        with tf.name_scope('fc2') as scope:

            W_fc2 = weight_variable([1024, NUM_CLASSES])

            b_fc2 = bias_variable([NUM_CLASSES])

        with tf.name_scope('softmax') as scope:

            y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

        return y_conv

     

    if __name__ == '__main__':

        test_image = []

        filenames = []

        for i in range(1, len(sys.argv)):

            img = cv2.imread(sys.argv[i])

            img = cv2.resize(img, (28, 28))

            test_image.append(img.flatten().astype(np.float32)/255.0)

            filenames.append(sys.argv[i])

        test_image = np.asarray(test_image)

        images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS))

        labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES))

        keep_prob = tf.placeholder("float")

        logits = inference(images_placeholder, keep_prob)

        sess = tf.InteractiveSession()

        saver = tf.train.Saver()

        sess.run(tf.initialize_all_variables())

        saver.restore(sess, "model.ckpt")

        for i in range(len(test_image)):

            pred = np.argmax(logits.eval(feed_dict={

                images_placeholder: [test_image[i]],

                keep_prob: 1.0 })[0])

            pred2 = logits.eval(feed_dict={

                images_placeholder: [test_image[i]],

                keep_prob: 1.0 })[0]

            print filenames[i],pred,"{0:10.8f}".format(pred2[0]),"{0:10.8f}".format(pred2[1])

  • 相关阅读:
    输入框只能输入正数且保留小数后2位数字,正则
    vscode安装ESlint配置
    kubreretes && docker 模块
    python3安装sqlite3库
    dokcerfile 制作Msql镜像
    前端模板
    Python SMTP发送邮件
    k8s-api
    openpyxl
    k8s mysql主从
  • 原文地址:https://www.cnblogs.com/marszhw/p/6658990.html
Copyright © 2020-2023  润新知