• Transformer自下而上理解(3) Self-attention机制


    本文笔记参考Wang Shusen老师的课程:https://www.youtube.com/watch?v=Vr4UNt7X6Gw&list=PLvOO0btloRnuTUGN4XqO85eKPeFSZsEqK&index=9

    1. 前言

    2015年,在文献[1]中首次提出attention。到了2016年,在文献[2]中提出了self-attention方法。作者将self-attention和LSTM结合用在了机器阅读任务上。为了好理解,下文将LSTM表示成SimpleRNN。

    在阅读以下内容之前,强烈建议先看看之前关于attention机制的文章介绍:Transformer自下而上(2) 注意力(Attention)机制

    2. SimpleRNN (LSTM)

    由下图可以看到传统的LSTM的第一个输出(h_1)只依赖于两个输入(x_1)(h_0)

    Fig 1. LSTM

    3. SimpleRNN + Attention

    下面我们会逐项介绍计算过程。

    3.1 计算(h_1)(c_1)

    下图给出了加入Attention机制后的示意图,可以看到和Fig 1. 的区别在于我们把(h_0)替换成了(c_0)。由于(h_0)(c_0)是已经初始化好了的,所以根据下图中的公式我们能直接计算出(h_1)

    Fig 2. LSTM+Attention

    接下来我们需要计算(c_1)。Attention的目的是为了避免遗忘,所以一种很自然的思路就是(c_i)是所有之前状态({h0,..,h_{i-1}})的加权求和,他们的权重分别是({alpha_0,...,alpha_{i-1}})。由于通常(h_0)初始化为0向量,所以(c_1=h_1)

    Fig 3. 计算c1

    3.2 计算(h_i)(c_i)

    看完(h_1)(c_1)的计算是不是还有点懵,没关系,下面我们加大学习力度,重复多看几次计算过程。

    计算(h)的方法千篇一律,都是那当前的输入(x_i)和前一时刻的context vector (c_{i-1})拼接成一个向量后参与计算,即

    [mathbf{h}_{i}= anh left(mathbf{A} cdotleft[egin{array}{l} mathbf{x}_{i} \ mathrm{c}_{i-1} end{array} ight]+mathbf{b} ight) ]

    Fig 4. 计算h2

    下一步是计算(c_2)(c)的通用计算公式可以写成 (c_i=alpha_1 h_1+...alpha_{i-1} h_{i-1})

    权重(alpha_i)的计算公式为

    [alpha_{i}=operatorname{align}left(mathbf{h}_{i}, mathbf{h}_{2} ight) ]

    上面的(align)可以有不同的实现方法([3]),你只需要知道(alpha_i)表示(h_i)(h_2)之间的权重(或者是相似度),计算出所有的(alpha_i)之后我们就能计算出(c_i)了,这里(c_2=alpha_1h_1+alpha_2h_2)

    Fig 5. 计算c2

    3.3 再计算一次

    Fig 6. 计算h4

    同理,要计算(c_4),我们仍然要通过使用(align)计算符计算出不同的(alpha)

    注意,Fig 7里的(alpha_1,alpha_2,...)和Fig 5里的(alpha)是不一样的,这里只是为了方便讲解。也就是说每计算新的(c)都要计算一遍不同的(alpha)。为了计算这些权重,我们每次都会遍历一遍之前的数据,所以这样可以有效解决SimpleRNN遗忘的问题。

    Fig 7. 计算c4

    参考文献

    [1] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In ICLR, 2015
    [2] Cheng J, Dong L, Lapata M. Long short-term memory-networks for machine reading. In EMNLP, 2016
    [3] Transformer自下而上(2) 注意力(Attention)机制 (https://zhuanlan.zhihu.com/p/374841046)

    微信公众号:AutoML机器学习
    MARSGGBO原创
    如有意合作或学术讨论欢迎私戳联系~
    邮箱:marsggbo@foxmail.com

    2021-05-21 16:39:50

  • 相关阅读:
    SQL Server 父子迭代查询语句,树状查询
    金山单词2003
    算算你的女友值多少钱?(精确新版)
    腾讯QQ2006 Fianl 海峰实用版(0114)┊
    私人保险箱 5.85 免费下载
    金山快译 2007 下载个人收藏专业版
    2007最新花之神匠代码 2月份更新 (3分钟搞定)
    金山词霸2007免费下载
    写给下一个她的男友
    SAP 价格条件表PRCD_ELEMENTS
  • 原文地址:https://www.cnblogs.com/marsggbo/p/14805290.html
Copyright © 2020-2023  润新知