• in和exists的区别与SQL执行效率分析


    可总结为:当子查询表比主查询表大时,用Exists;当子查询表比主查询表小时,用in

    SQL中in可以分为三类:

      1、形如select * from t1 where f1 in ('a','b'),应该和以下两种比较效率

      select * from t1 where f1='a' or f1='b'

      或者 select * from t1 where f1 ='a' union all select * from t1 f1='b'

      你可能指的不是这一类,这里不做讨论。

      2、形如select * from t1 where f1 in (select f1 from t2 where t2.fx='x'),

      其中子查询的where里的条件不受外层查询的影响,这类查询一般情况下,自动优化会转成exist语句,也就是效率和exist一样。

      3、形如select * from t1 where f1 in (select f1 from t2 where t2.fx=t1.fx),

      其中子查询的where里的条件受外层查询的影响,这类查询的效率要看相关条件涉及的字段的索引情况和数据量多少,一般认为效率不如exists。

      除了第一类in语句都是可以转化成exists 语句的SQL,一般编程习惯应该是用exists而不用in,而很少去考虑in和exists的执行效率.

    in和exists的SQL执行效率分析

      A,B两个表,

      (1)当只显示一个表的数据如A,关系条件只一个如ID时,使用IN更快:

      select * from A where id in (select id from B)

      (2)当只显示一个表的数据如A,关系条件不只一个如ID,col1时,使用IN就不方便了,可以使用EXISTS:

      select * from A

      where exists (select 1 from B where id = A.id and col1 = A.col1)

      (3)当只显示两个表的数据时,使用IN,EXISTS都不合适,要使用连接:

      select * from A left join B on id = A.id

      所以使用何种方式,要根据要求来定。

      这是一般情况下做的测试:

      这是偶的测试结果:

      set statistics io on
      select * from sysobjects where exists (select 1 from syscolumns where id=syscolumns.id)
      select * from sysobjects where id in (select id from syscolumns )
      set statistics io off

     (47 行受影响)

      表'syscolpars'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 2 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      (1 行受影响)

      (44 行受影响)

      表'syscolpars'。扫描计数 47,逻辑读取 97 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      (1 行受影响)

      set statistics io on
      select * from syscolumns where exists (select 1 from sysobjects where id=syscolumns.id)
      select * from syscolumns where id in (select id from sysobjects )
      set statistics io off


      (419 行受影响)

      表'syscolpars'。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 15 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      (1 行受影响)

      (419 行受影响)

      表'syscolpars'。扫描计数 1,逻辑读取 10 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      表'sysschobjs'。扫描计数 1,逻辑读取 3 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

      (1 行受影响)

      测试结果(总体来讲exists比in的效率高):

      效率:条件因素的索引是非常关键的

      把syscolumns 作为条件:syscolumns 数据大于sysobjects

      用in

      扫描计数 47,逻辑读取 97 次,

      用exists

      扫描计数 1,逻辑读取 3 次

      把sysobjects作为条件:sysobjects的数据少于syscolumns

      exists比in多预读 15 次


      对此我记得还做过如下测试:

      表

      test

      结构

      id int identity(1,1), --id主键自增

      sort int, --类别,每一千条数据为一个类别

      sid int --分类id

      插入600w条数据

      如果要查询每个类别的最大sid 的话
    select * from test a 
      where not exists(select 1 from test where sort = a.sort and sid > a.sid) 

    select * from test a 
      where sid in (select max(sid) from test where sort = a.sort) 
    的执行效率要高三倍以上。具体的执行时间忘记了。但是结果我记得很清楚。在此之前我一直推崇第二种写法,后来就改第一种了。


    in和exists的sql执行效率分析,再简单举一个例子:
    declare @t table(id int identity(1,1), v varchar(10))
    insert @t select'a'
    union all select'b'
    union all select'c'
    union all select'd'
    union all select'e'
    union all select'b'
    union all select'c'
    --a语句in的sql写法
    select * from @t where v in (select v from @t group by v having count(*)>1)
    --b语句exists的sql写法
    select * from @t a where exists(select 1 from @t where id!=a.id and v=a.v) 
    两条语句功能都是找到表变量@t中,v含有重复值的记录.

      第一条sql语句使用in,但子查询中与外部没有连系.

      第二条sql语句使用exists,但子查询中与外部有连系.

      大家看SQL查询计划,很清楚了.

      selec v from @t group by v having count(*)> 1

      这条Sql语句,它的执行不依赖于主查询主句(我也不知道怎么来描述in外面的和里面的,暂且这么叫吧,大家明白就行)

      那么,SQL在查询时就会优化,即将它的结果集缓存起来

      即缓存了

      v

      ---

      b

      c

      后续的操作,主查询在每处理一步时,相当于在处理 where v in('b','c') 当然,语句不会这么转化, 只是为了说明意思,也即主查询每处理一行(记为currentROW时,子查询不会再扫描表, 只会与缓存的结果进行匹配

      而

      select 1 from @t where id!=a.id and v=a.v

      这一句,它的执行结果依赖于主查询中的每一行.

      当处理主查询第一行时 即 currentROW(id=1)时, 子查询再次被执行 select 1 from @t where id!=1 and v='a' 扫描全表,从第一行记 currentSubROW(id=1) 开始扫描,id相同,过滤,子查询行下移,currentSubROW(id=2)继续,id不同,但v值不匹配,子查询行继续下移...直到 currentSubROW(id=7)没找到匹配的, 子查询处理结束,第一行currentROW(id=1)被过滤,主查询记录行下移

      处理第二行时,currentROW(id=2), 子查询 select 1 from @t where id!=2 and v='b' ,第一行currentSubROW(id=1)v值不匹配,子查询下移,第二行,id相同过滤,第三行,...到第六行,id不同,v值匹配, 找到匹配结果,即返回,不再往下处理记录. 主查询下移.

      处理第三行时,以此类推...

      sql优化中,使用in和exist? 主要是看你的筛选条件是在主查询上还是在子查询上。

      通过分析,相信大家已经对in和exists的区别、in和exists的SQL执行效率有较清晰的了解。  
  • 相关阅读:
    HBase入门,看这一篇就够了
    【从零开始学CenterNet】6. CenterNet之loss计算代码解析
    cobbler使用DTK自动化做RAID
    linux批量免密登陆
    《ASP.NET Core 与 RESTful API 开发实战》-- (第8章)-- 读书笔记(下)
    《ASP.NET Core 与 RESTful API 开发实战》-- (第8章)-- 读书笔记(中)
    Python基础-v1
    js实现二维数组转置
    冰蝎3.0 流量特征分析 附特征
    关于 PDF相关整改建议的pdf后门事件分析
  • 原文地址:https://www.cnblogs.com/marcotan/p/4256894.html
Copyright © 2020-2023  润新知