Sliding Window Maximum (H)
题目
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Example 3:
Input: nums = [1,-1], k = 1
Output: [1,-1]
Example 4:
Input: nums = [9,11], k = 2
Output: [11]
Example 5:
Input: nums = [4,-2], k = 2
Output: [4]
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
题意
给定一个数组和一个定长窗口,将窗口在数组上从左到右滑动,记录每一步在当前窗口中的最大值。
思路
优先队列
维护一个优先队列,存储一个数值对(nums[index], index)。遍历数组,计算当前窗口的左边界left,将当前数字加入到优先队列中,查看当前优先队列中的最大值的下标是否小于left,如果是则说明该最大值不在当前窗口中,出队,重复操作直到最大值在当前窗口中,并加入结果集。
双向队列
维护一个双向队列,存储下标。遍历数组,计算当前窗口的左边界left,如果队首元素小于left则出队;接着从队尾开始,将所有小于当前元素的下标依次出队,最后将当前下标入队。这样能保证每次剩下的队首元素都是当前窗口中的最大值。
代码实现
Java
优先队列
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int[] ans = new int[nums.length - k + 1];
Queue<int[]> q = new PriorityQueue<>((a, b) -> b[0] - a[0]);
int left = 0;
for (int i = 0; i < nums.length; i++) {
left = i - k + 1;
q.offer(new int[]{nums[i], i});
if (left >= 0) {
while (q.peek()[1] < left) {
q.poll();
}
ans[left] = q.peek()[0];
}
}
return ans;
}
}
双向队列
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int[] ans = new int[nums.length - k + 1];
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < nums.length; i++) {
int left = i - k + 1;
if (!q.isEmpty() && q.peekFirst() < left) {
q.pollFirst();
}
while (!q.isEmpty() && nums[i] > nums[q.peekLast()]) {
q.pollLast();
}
q.offerLast(i);
if (left >= 0) {
ans[left] = nums[q.peekFirst()];
}
}
return ans;
}
}