• 0119. Pascal's Triangle II (E)


    Pascal's Triangle II (E)

    题目

    Given a non-negative index k where k ≤ 33, return the (k^{th}) index row of the Pascal's triangle.

    Note that the row index starts from 0.

    img
    In Pascal's triangle, each number is the sum of the two numbers directly above it.

    Example:

    Input: 3
    Output: [1,3,3,1]
    

    Follow up:

    Could you optimize your algorithm to use only O(k) extra space?


    题意

    求出帕斯卡(杨辉)三角形的指定行的元素。

    思路

    可以直接建二维数组进行模拟;也可以压缩至一维数组进行处理;最省空间的是直接根据杨辉三角形的组合数性质直接计算出指定行的所有元素,即 (triangle[i][j]=C^j_i)


    代码实现

    Java

    二维数组

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            int[][] triangle = new int[rowIndex + 1][rowIndex + 1];
            triangle[0][0] = 1;
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = 0; j <= i; j++) {
                    triangle[i][j] = j == 0 || j == i ? 1 : triangle[i - 1][j - 1] + triangle[i - 1][j];
                }
            }
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(triangle[rowIndex][i]);
            }
    
            return ans;
        }
    }
    

    一维数组

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            int[] row = new int[rowIndex + 1];
            row[0] = 1;
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = i; j >= 1; j--) {
                    row[j] = row[j] + row[j - 1];
                }
            }
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(row[i]);
            }
    
            return ans;
        }
    }
    

    一维数组(直接List处理)

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            ans.add(1);
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = i; j >= 1; j--) {
                    if (j == i) {
                        ans.add(1);
                    } else {
                        ans.set(j, ans.get(j) + ans.get(j - 1));
                    }
                }
            }
    
            return ans;
        }
    }
    

    组合数

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(combination(rowIndex, i));
            }
    
            return ans;
        }
    
        private int combination(int i, int j) {
            if (j > i / 2) {
                return combination(i, i - j);
            }
    
            double ans = 1.0;
            while (j >= 1) {
                ans *= 1.0 * i-- / j--;
            }
    
            return (int) Math.round(ans);
        }
    }
    

    JavaScript

    /**
     * @param {number} rowIndex
     * @return {number[]}
     */
    var getRow = function (rowIndex) {
      let k = 0
      let tri = [1]
      while (k != rowIndex) {
        let pre = 1
        for (let i = 1; i <= k; i++) {
          let cur = tri[i]
          tri[i] = cur + pre
          pre = cur
        }
        tri[++k] = 1
      }
      return tri
    }
    
  • 相关阅读:
    【POJ 2044】 Weather Forecast
    【POJ 1703】 Find them,Catch them
    【SCOI 2005】 骑士精神
    字长与指针
    XModem协议
    SecureCRT乱码问题解决方法
    usb设备驱动程序
    如何检测 51单片机IO口的下降沿
    matlab神经网络工具箱创建神经网络
    九针串口接线问题, 232, 485
  • 原文地址:https://www.cnblogs.com/mapoos/p/13494742.html
Copyright © 2020-2023  润新知