斜率在转移顺序下不满足单调性的斜率优化(DP),用动态凸包来维护。送命题。
简化版题意:每次在凸包上插入一个点,以及求一条斜率为(K)的直线与当前凸包的交点。思路简单实现困难。
(P.s),不是特别建议用(Set)来维护动态凸包,万一中间哪一点功能实现(STL)没有提供就(GG)了。(比如要有两种比较运算符。)本人因此重构了三次(:))
代码来源:黄学长的代码的魔改版。
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const int N = 100000 + 5;
int n, top, sta[N]; double f[N];
struct point {
double x, y, a, b, k, rate; int w, id;
}p[N], t[N];
double getk (int a, int b) {
if (b == 0) return -1e20;
if (fabs (p[a].x - p[b].x) < eps) {
return 1e20;
} else {
return (p[b].y - p[a].y) / (p[b].x - p[a].x);
}
}
bool operator < (point a, point b) {
return a.k > b.k;
}
void solve (int l, int r) {
if (l == r) {
f[l] = max (f[l], f[l - 1]);
p[l].y = f[l] / (p[l].a * p[l].rate + p[l].b);
p[l].x = p[l].rate * p[l].y;
return;
}//分治到底了显然我们可以直接计算出结果
int l1, l2, mid = (l + r) >> 1, j = 1;
//============================================================================
l1 = l; l2 = mid + 1;
for (int i = l; i <= r; i++) {
if (p[i].id <= mid) {
t[l1++] = p[i];
} else {
t[l2++] = p[i];
}
}
for (int i = l; i <= r; i++) {
p[i] = t[i];
}
solve (l, mid);//递归左边
top = 0;
for (int i = l; i <= mid; i++) {
while (top > 1 && getk (sta[top - 1], sta[top]) < getk (sta[top - 1], i) + eps) {
top--;
}
sta[++top] = i;
}//左边维护一个凸包
sta[++top] = 0;
for (int i = mid + 1; i <= r; i++) {
while (j < top && getk (sta[j], sta[j + 1]) + eps > p[i].k) {
j++;
}//用左边的点作为决策更新右边
f[p[i].id] = max (f[p[i].id], p[sta[j]].x * p[i].a + p[sta[j]].y * p[i].b);
}
solve (mid + 1, r);//递归右边
l1 = l; l2 = mid + 1;
for (int i = l; i <= r; i++) {
if (((p[l1].x < p[l2].x || (fabs(p[l1].x - p[l2].x) < eps && p[l1].y < p[l2].y)) || l2 > r) && l1 <= mid) {
t[i] = p[l1++];
} else {
t[i] = p[l2++];
}
}
for (int i = l; i <= r; i++) p[i] = t[i];
}
int main () {
// freopen ("data.in", "r", stdin);
cin >> n >> f[0];
for (int i = 1; i <= n; i++) {
cin >> p[i].a >> p[i].b >> p[i].rate;
p[i].k = -p[i].a / p[i].b; p[i].id = i;
}
sort (p + 1, p + n + 1);//这里按照斜率进行排序,保证分治的每一块斜率是有序的
solve (1, n);
cout << fixed << setprecision (10) << f[n] << endl;
}