连接组件标记算法(connected component labeling algorithm)是图像分析中最常用的算法之一,
算法的实质是扫描一幅图像的每个像素,对于像素值相同的分为相同的组(group),最终得到
图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像
素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,对于二值图像而言,
连通组件集合可以是V={1}或者V={0}, 取决于前景色与背景色的不同。对于灰度图像来说,
连图组件像素集合可能是一系列在0 ~ 255之间的灰度值。
算法流程如下:
1. 首先扫描当前像素相邻的八邻域像素值,发现连通像素加以标记。
2. 完全扫描所有像素点之后,根据标记将所有连通组件合并。
算法实现Class文件解释:
AbstractConnectedComponentLabel:一个抽象的Class定义了抽象方法doConntectedLabel()
同时完成了一些公共方法
ConnectedComponentLabelAlgOne:一个容易读懂的连接组件算法完成,没有任何优化,
继承上面的自抽象类
ConnectedComponentLabelAlgTwo:一个快速的连接组件算法,基于算法优化,取当前像素
的四邻域完成扫描与标记合并。
Label与PixelInfo是两个数据结构,用来存储算法计算过程中的中间变量。
ImageLabelFilter用来测试算法的驱动类,ImageAnalysisUI是现实测试结果的UI类
算法运行结果:
根据标记的索引将组件着色。
定义数据结构的代码如下:
- public class Label {
- private int index;
- private Label root;
- public Label(int index) {
- this.index = index;
- this.root = this;
- }
- public Label getRoot() {
- if(this.root != this) {
- this.root = this.root.getRoot();
- }
- return root;
- }
- public int getIndex() {
- return index;
- }
- public void setIndex(int index) {
- this.index = index;
- }
- public void setRoot(Label root) {
- this.root = root;
- }
- }
Pixelnfo的代码如下:
- package com.gloomyfish.image.analysis;
- public class PixelInfo {
- private int value; // pixel value
- private int xp;
- private int yp;
- public PixelInfo(int pixelValue, int yp, int xp) {
- this.value = pixelValue;
- this.yp = yp;
- this.xp = xp;
- }
- public int getValue() {
- return value;
- }
- public void setValue(int value) {
- this.value = value;
- }
- public int getXp() {
- return xp;
- }
- public void setXp(int xp) {
- this.xp = xp;
- }
- public int getYp() {
- return yp;
- }
- public void setYp(int yp) {
- this.yp = yp;
- }
- }
- public abstract class AbstractConnectedComponentLabel {
- protected int width;
- protected int height;
- protected Color fgColor;
- protected int[] inPixels;
- protected int[][] chessborad;
- protected Map<Integer, Integer> neighbourMap;
- public int getWidth() {
- return width;
- }
- public void setWidth(int width) {
- this.width = width;
- }
- public int getHeight() {
- return height;
- }
- public void setHeight(int height) {
- this.height = height;
- }
- public abstract Map<Integer, List<PixelInfo>> doConntectedLabel();
- public boolean isForeGround(int tr, int tg, int tb) {
- if(tr == fgColor.getRed() && tg == fgColor.getGreen() && tb == fgColor.getBlue()) {
- return true;
- } else {
- return false;
- }
- }
- }
- import java.awt.Color;
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- public class ConnectedComponentLabelAlgOne extends AbstractConnectedComponentLabel {
- public ConnectedComponentLabelAlgOne(Color fgColor, int[] srcPixel, int width, int height) {
- this.fgColor = fgColor;
- this.width = width;
- this.height = height;
- this.inPixels = srcPixel;
- this.chessborad = new int[height][width];
- for(int i=0; i<height; i++) {
- for(int j=0; j<width; j++) {
- chessborad[i][j] = 0;
- }
- }
- this.neighbourMap = new HashMap<Integer, Integer>();
- }
- // assume the input image data is binary image.
- public Map<Integer, List<PixelInfo>> doConntectedLabel() {
- System.out.println("start to do connected component labeling algorithm");
- int index = 0;
- int labelCount = 0;
- Label currentLabel = new Label(0);
- HashMap<Integer, Label> allLabels = new HashMap<Integer, Label>();
- for(int row=0; row<height; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- for(int col=0; col<width; col++) {
- index = row * width + col;
- ta = (inPixels[index] >> 24) & 0xff;
- tr = (inPixels[index] >> 16) & 0xff;
- tg = (inPixels[index] >> 8) & 0xff;
- tb = inPixels[index] & 0xff;
- if(isForeGround(tr, tg, tb)) {
- getNeighboringLabels(row, col);
- if(neighbourMap.size() == 0) {
- currentLabel.setIndex(++labelCount);
- allLabels.put(labelCount,new Label(labelCount));
- } else {
- for(Integer pixelLabel : neighbourMap.keySet().toArray(new Integer[0])) {
- currentLabel.setIndex(pixelLabel);
- break;
- }
- mergeLabels(currentLabel.getIndex(), neighbourMap, allLabels);
- }
- chessborad[row][col] = currentLabel.getIndex();
- }
- }
- }
- Map<Integer, List<PixelInfo>> connectedLabels = consolidateAllLabels(allLabels);
- return connectedLabels;
- }
- private Map<Integer, List<PixelInfo>> consolidateAllLabels(HashMap<Integer, Label> allLabels) {
- Map<Integer, List<PixelInfo>> patterns = new HashMap<Integer, List<PixelInfo>>();
- int patternNumber;
- List<PixelInfo> shape;
- for (int i = 0; i < this.height; i++)
- {
- for (int j = 0; j < this.width; j++)
- {
- patternNumber = chessborad[i][j];
- if (patternNumber != 0)
- {
- patternNumber = allLabels.get(patternNumber).getRoot().getIndex();
- if (!patterns.containsKey(patternNumber))
- {
- shape = new ArrayList<PixelInfo>();
- shape.add(new PixelInfo(Color.BLUE.getRGB(), i, j));
- }
- else
- {
- shape = patterns.get(patternNumber);
- shape.add(new PixelInfo(Color.BLUE.getRGB(), i, j));
- }
- patterns.put(patternNumber, shape);
- }
- }
- }
- return patterns;
- }
- private void mergeLabels(int index, Map<Integer, Integer> neighbourMap,
- HashMap<Integer, Label> allLabels) {
- Label root = allLabels.get(index).getRoot();
- Label neighbour;
- for(Integer key : neighbourMap.keySet().toArray(new Integer[0])) {
- if (key != index)
- {
- neighbour = allLabels.get(key);
- if(neighbour.getRoot() != root) {
- neighbour.setRoot(neighbour.getRoot());// thanks zhen712,
- }
- }
- }
- }
- /**
- * get eight neighborhood pixels
- *
- * @param row
- * @param col
- * @return
- */
- public void getNeighboringLabels(int row, int col) {
- neighbourMap.clear();
- for(int i=-1; i<=1; i++) {
- int yp = row + i;
- if(yp >=0 && yp < this.height) {
- for(int j=-1; j<=1; j++) {
- if(i == 0 && j==0) continue; // ignore/skip center pixel/itself
- int xp = col + j;
- if(xp >=0 && xp < this.width) {
- if(chessborad[yp][xp] != 0) {
- if(!neighbourMap.containsKey(chessborad[yp][xp])) {
- neighbourMap.put(chessborad[yp][xp],0);
- }
- }
- }
- }
- }
- }
- }
- }
版权声明:本文为博主原创文章,未经博主允许不得转载。