题目大意 : 给出一个串 (S),让你找出 (A, B, C) 三个串,满足 (C) 是一个后缀, (A + B + C)是一个回文串,(B) 是一个长度为奇数的回文串,且 (A, C) 可以为空,并最大化 (|A| + |B| + |C|)
(1 leq |S| leq 10^5)
解题思路 :
考虑 (B) 是不能为空的,不妨先用 (Manacher) 跑一边,然后枚举 (B) 的回文中心
那么问题转化为,在 (B) 之前的某个子串和在 (B) 之后的后缀的反串最长匹配长度
可以 (KMP) 出对于每一个 (i),(mx_i) 表示以 (i) 结尾的前缀最长匹配了多长的反串后缀
那么对于回文中心 (i), 设其回文半径为 (r_i),其作为 (B) 串回文中心的答案就是 (2(p_i+min(mt[i-r_i], n - i - r_i + 1) - 1)
所以统计枚举每一个回文中心,(O(1)) 统计答案即可,总复杂度是 (O(n)),更多内容可以参考 2014年集训队论文 《浅谈回文子串问题 》—— 徐毅
/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 500005;
char s[N];
int pr[N], n;
struct Match{ int l, r, len; } mt[N];
struct Answer{ int l, r, p, su, val; } ans;
namespace Manacher{
char t[N]; int r[N], len;
inline void init(char *s){
for(int i = 1; i <= n; i++)
t[++len] = '#', t[++len] = s[i]; t[++len] = '#';
}
inline void realmain(){
int mx = 0, p = 0;
for(int i = 1; i <= len; i++){
if(mx > i) r[i] = Min(r[2*p-i], mx - i); else r[i] = 1;
while(r[i] < i && i + r[i] - 1 <= len && t[i-r[i]] == t[i+r[i]]) ++r[i];
if(i + r[i] - 1 > mx) mx = i + r[i] - 1, p = i;
}
for(int i = 2; i <= len; i += 2) pr[i/2] = r[i] / 2;
}
}
namespace Kmp{
char t[N]; int nxt[N];
inline void init(char *s){
for(int i = 1; i <= n; i++) t[i] = s[n-i+1];
nxt[0] = -1;
for(int i = 1, j = -1; i <= n; nxt[i++] = ++j)
while(t[j+1] != t[i] && ~j) j = nxt[j];
}
inline void realmain(char *s){
for(int i = 1, j = 0; i <= n; i++){
while(t[j+1] != s[i] && ~j) j = nxt[j];
mt[i].len = ++j, mt[i].r = i, mt[i].l = i - j + 1;
}
for(int i = 1; i <= n; i++)
if(mt[i-1].len > mt[i].len) mt[i] = mt[i-1];
}
}
int main(){
scanf("%s", s + 1), n = strlen(s + 1);
Kmp::init(s), Kmp::realmain(s);
Manacher::init(s), Manacher::realmain();
for(int i = 1; i <= n; i++){
int pos = i - pr[i], suf = min(mt[pos].len, n - i - pr[i] + 1);
int res = 2 * (pr[i] + suf) - 1;
if(res > ans.val) ans = (Answer){mt[pos].l, mt[pos].r, i, suf, res};
}
int l1 = ans.l, r1 = ans.r;
int l2 = ans.p - pr[ans.p] + 1, r2 = ans.p + pr[ans.p] - 1;
int l3 = n - ans.su + 1, r3 = n, tot = 3;
r1 = min(r1, l2 - 1), l3 = max(l3, r2 + 1);
if(r1 < l1 || !l1 || !r1) tot--;
if(l3 > r3 || l3 > n || r3 > n) tot--;
cout << tot << endl;
if(l1 <= r1 && l1 && r1) cout << l1 << " " << r1 - l1 + 1 << endl;
cout << l2 << " " << r2 - l2 + 1 << endl;
if(l3 <= r3 && l3 <= n && r3 <= n) cout << l3 << " " << r3 - l3 + 1 << endl;
return 0;
}