「NOIP2018保卫王国」
题目描述
有一棵 (n) 个点, 点有点权 (a_i),(m) 组询问, 每次求钦点两个节点必须选或者必须不选后的树上最小点覆盖。(1 leq n, m leq 10^5)
解题思路 :
这个题唯一的意义恐怕是普及了一个还不能算太普及的科技,至少我没有时间去实现这个东西。当然 ( ext{nqiiii}) 大爷考场上写了标算没写这个科技就过了是真的强。(不愧是机房里仅次于 ( ext{AK})王( ext{zzd}) 的男人)
我最早接触这个科技是联赛前一个星期 ( ext{txc}) 让我膜他博客的时候接触到的,感觉他博客讲的非常优秀,现在这里挂一个链接传送一下:撩妹狂魔的博客
说普及科技的原因是因为这个题用动态( ext{DP})来做基本就是一个模板题。首先不考虑询问,问题是一个简单的树形( ext{DP}) ,设 (f[u][0/1]) 表示以 (u) 为根的子树里面 (u) 不选的最小点覆盖。
直接处理可能不太方便,不妨先考虑退化成一条 (i ightarrow i+1) 的链的情况:
考虑这个 ( ext{DP}) 只有加法和取 ( ext{min}) 操作,不妨用重新定义线性变换来描述这个转移:
这里把乘法重定义为加法,加法重定义为取 (min),这个矩阵的乘法就等价于上式的转移。然后用线段树维护一下就可以做原题中链的部分分了。
考虑树的情况,既然会做链了,那么只需要树剖就能搞了。用线段树维护每一条重链上的转移,转移的时候需要将这个节点的轻儿子的贡献写到转移矩阵中,那么只需要先预处理出 (f) ,设:
原来的线性变换就改为:
其中 (mson) 表示 (u) 的重儿子,此时每一个点的 (f) 就是其所在重链底部到它的所有矩阵乘起来的结果,用线段树维护即可。
考虑怎么回答这个题的询问,每次修改可以看做将两个 (f[u][s]) 修改为 (infty) 后求答案,这里等价于修改 (A_u)或者(B_u) ,考虑一次修改的影响是到当前重链的链头的,所以每跳一次轻边都要重新计算父亲的 (A_u) 和 (B_u) ,这样相当于是在线段树上做单点修改,并求出修改完后 (f[1]) 的值。考虑轻边最多跳 (log) 次,修改的总复杂度是 (O(log^2n)),总复杂度是 (O(nlog^2n))。
实际上这个东西还有两个 (O(nlogn)) 的做法,很显然其中一个是 ( ext{Lct}),另外一个是叫全局平衡二叉树的科技,$ ext{txc} $的博客里讲的非常优秀,大家可以去膜拜一波。
/*program by mangoyang*/
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define inf ((ll)(1e10))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 200005;
char str[10];
vector<int> ed[N];
ll f[N][2], g[N][2], ff[N], a[N];
int top[N], sz[N], ls[N], ms[N], dfn[N], n, m, cnt;
struct Matrix{
ll a[3][3];
inline Matrix(){
for(int i = 1; i <= 2; i++)
for(int j = 1; j <= 2; j++) a[i][j] = inf;
}
inline Matrix(ll x, ll y){
a[1][2] = x, a[2][1] = a[2][2] = y, a[1][1] = inf;
}
Matrix operator * (const Matrix &A) const{
Matrix c;
for(int i = 1; i <= 2; i++)
for(int j = 1; j <= 2; j++)
for(int k = 1; k <= 2; k++)
c.a[i][j] = Min(a[i][k] + A.a[k][j], c.a[i][j]);
return c;
}
};
struct SegmentTree{
Matrix s[N<<2];
#define lson (u << 1)
#define rson (u << 1 | 1)
inline void modify(int u, int l, int r, int pos, Matrix x){
if(l == r) return (void) (s[u] = x);
int mid = l + r >> 1;
if(pos <= mid) modify(lson, l, mid, pos, x);
else modify(rson, mid + 1, r, pos, x);
s[u] = s[lson] * s[rson];
}
inline Matrix query(int u, int l, int r, int L, int R){
if(l >= L && r <= R) return s[u];
int mid = l + r >> 1;
Matrix res;
res.a[1][1] = res.a[2][2] = 0, res.a[1][2] = res.a[2][1] = inf;
if(L <= mid) res = res * query(lson, l, mid, L, R);
if(mid < R) res = res * query(rson, mid + 1, r, L, R);
return res;
}
}Seg;
namespace gao{
inline void dfs(int u, int fa){
ff[u] = fa, sz[u] = 1, f[u][1] = a[u];
for(int i = 0; i < ed[u].size(); i++){
int v = ed[u][i];
if(v == fa) continue;
dfs(v, u), sz[u] += sz[v];
if(sz[v] > sz[ms[u]]) ms[u] = v;
f[u][0] += f[v][1];
f[u][1] += min(f[v][0], f[v][1]);
}
}
inline void dfs2(int u, int fa, int fff){
top[u] = fff, dfn[u] = ++cnt, g[u][1] = a[u];
if(!ms[u]){
Seg.modify(1, 1, n, dfn[u], Matrix(g[u][0], g[u][1]));
return (void) (ls[fff] = cnt);
}
dfs2(ms[u], u, fff);
for(int i = 0; i < ed[u].size(); i++){
int v = ed[u][i];
if(v == ms[u] || v == fa) continue;
g[u][0] += f[v][1];
g[u][1] += min(f[v][1], f[v][0]);
dfs2(v, u, v);
}
Seg.modify(1, 1, n, dfn[u], Matrix(g[u][0], g[u][1]));
}
inline ll update(int u){
Seg.modify(1, 1, n, dfn[u], Matrix(g[u][0], g[u][1]));
for(u = top[u]; u > 1; u = top[ff[u]]){
Matrix now = Seg.query(1, 1, n, dfn[u], ls[u]);
g[ff[u]][0] -= f[u][1];
g[ff[u]][1] -= Min(f[u][0], f[u][1]);
f[u][0] = now.a[1][2], f[u][1] = now.a[2][2];
g[ff[u]][0] += f[u][1];
g[ff[u]][1] += Min(f[u][0], f[u][1]);
Seg.modify(1, 1, n, dfn[ff[u]], Matrix(g[ff[u]][0], g[ff[u]][1]));
}
Matrix ans = Seg.query(1, 1, n, 1, ls[1]);
return min(ans.a[1][2], ans.a[2][2]);
}
}
signed main(){
read(n), read(m), scanf("%s", str);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1, x, y; i < n; i++){
read(x), read(y);
ed[x].push_back(y), ed[y].push_back(x);
}
gao::dfs(1, 0), gao::dfs2(1, 0, 1);
for(int i = 1, a, b, x, y; i <= m; i++){
read(a), read(x), read(b), read(y), x ^= 1, y ^= 1;
ll tmp1 = g[a][x], tmp2 = g[b][y];
g[a][x] = inf, gao::update(a);
g[b][y] = inf; ll ans = gao::update(b);
if(ans >= inf) puts("-1"); else printf("%lld
", ans);
g[a][x] = tmp1, gao::update(a);
g[b][y] = tmp2, gao::update(b);
}
return 0;
}