很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误、警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,logging的日志可以分为 debug()
, info()
, warning()
, error()
and critical() 5个级别,
下面我们看一下怎么用。
最简单用法
1
2
3
4
5
6
7
8
|
import logging logging.warning( "user [alex] attempted wrong password more than 3 times" ) logging.critical( "server is down" ) #输出 WARNING:root:user [alex] attempted wrong password more than 3 times CRITICAL:root:server is down |
看一下这几个日志级别分别代表什么意思
Level | When it’s used |
---|---|
DEBUG |
Detailed information, typically of interest only when diagnosing problems. |
INFO |
Confirmation that things are working as expected. |
WARNING |
An indication that something unexpected happened, or indicative of some problem in the near future (e.g. ‘disk space low’). The software is still working as expected. |
ERROR |
Due to a more serious problem, the software has not been able to perform some function. |
CRITICAL |
A serious error, indicating that the program itself may be unable to continue running. |
如果想把日志写到文件里,也很简单
1
2
3
4
5
6
|
import logging logging.basicConfig(filename = 'example.log' ,level = logging.INFO) logging.debug( 'This message should go to the log file' ) logging.info( 'So should this' ) logging.warning( 'And this, too' ) |
其中下面这句中的level=loggin.INFO意思是,把日志纪录级别设置为INFO,也就是说,只有比日志是INFO或比INFO级别更高的日志才会被纪录到文件里,在这个例子, 第一条日志是不会被纪录的,如果希望纪录debug的日志,那把日志级别改成DEBUG就行了。
1
|
logging.basicConfig(filename = 'example.log' ,level = logging.INFO) |
感觉上面的日志格式忘记加上时间啦,日志不知道时间怎么行呢,下面就来加上!
1
2
3
4
5
6
|
import logging logging.basicConfig( format = '%(asctime)s %(message)s' , datefmt = '%m/%d/%Y %I:%M:%S %p' ) logging.warning( 'is when this event was logged.' ) #输出 12 / 12 / 2010 11 : 46 : 36 AM is when this event was logged. |
日志格式
%(name)s |
Logger的名字 |
%(levelno)s |
数字形式的日志级别 |
%(levelname)s |
文本形式的日志级别 |
%(pathname)s |
调用日志输出函数的模块的完整路径名,可能没有 |
%(filename)s |
调用日志输出函数的模块的文件名 |
%(module)s |
调用日志输出函数的模块名 |
%(funcName)s |
调用日志输出函数的函数名 |
%(lineno)d |
调用日志输出函数的语句所在的代码行 |
%(created)f |
当前时间,用UNIX标准的表示时间的浮 点数表示 |
%(relativeCreated)d |
输出日志信息时的,自Logger创建以 来的毫秒数 |
%(asctime)s |
字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒 |
%(thread)d |
线程ID。可能没有 |
%(threadName)s |
线程名。可能没有 |
%(process)d |
进程ID。可能没有 |
%(message)s |
用户输出的消息 |
如果想同时把log打印在屏幕和文件日志里,就需要了解一点复杂的知识 了
Python 使用logging模块记录日志涉及四个主要类,使用官方文档中的概括最为合适:
logger提供了应用程序可以直接使用的接口;
handler将(logger创建的)日志记录发送到合适的目的输出;
filter提供了细度设备来决定输出哪条日志记录;
formatter决定日志记录的最终输出格式。
logger
每个程序在输出信息之前都要获得一个Logger。Logger通常对应了程序的模块名,比如聊天工具的图形界面模块可以这样获得它的Logger:
LOG=logging.getLogger(”chat.gui”)
而核心模块可以这样:
LOG=logging.getLogger(”chat.kernel”)
Logger.setLevel(lel):指定最低的日志级别,低于lel的级别将被忽略。debug是最低的内置级别,critical为最高
Logger.addFilter(filt)、Logger.removeFilter(filt):添加或删除指定的filter
Logger.addHandler(hdlr)、Logger.removeHandler(hdlr):增加或删除指定的handler
Logger.debug()、Logger.info()、Logger.warning()、Logger.error()、Logger.critical():可以设置的日志级别
handler
handler对象负责发送相关的信息到指定目的地。Python的日志系统有多种Handler可以使用。有些Handler可以把信息输出到控制台,有些Logger可以把信息输出到文件,还有些 Handler可以把信息发送到网络上。如果觉得不够用,还可以编写自己的Handler。可以通过addHandler()方法添加多个多handler
Handler.setLevel(lel):指定被处理的信息级别,低于lel级别的信息将被忽略
Handler.setFormatter():给这个handler选择一个格式
Handler.addFilter(filt)、Handler.removeFilter(filt):新增或删除一个filter对象
每个Logger可以附加多个Handler。接下来我们就来介绍一些常用的Handler:
1) logging.StreamHandler
使用这个Handler可以向类似与sys.stdout或者sys.stderr的任何文件对象(file object)输出信息。它的构造函数是:
StreamHandler([strm])
其中strm参数是一个文件对象。默认是sys.stderr
2) logging.FileHandler
和StreamHandler类似,用于向一个文件输出日志信息。不过FileHandler会帮你打开这个文件。它的构造函数是:
FileHandler(filename[,mode])
filename是文件名,必须指定一个文件名。
mode是文件的打开方式。参见Python内置函数open()的用法。默认是’a',即添加到文件末尾。
3) logging.handlers.RotatingFileHandler
这个Handler类似于上面的FileHandler,但是它可以管理文件大小。当文件达到一定大小之后,它会自动将当前日志文件改名,然后创建 一个新的同名日志文件继续输出。比如日志文件是chat.log。当chat.log达到指定的大小之后,RotatingFileHandler自动把 文件改名为chat.log.1。不过,如果chat.log.1已经存在,会先把chat.log.1重命名为chat.log.2。。。最后重新创建 chat.log,继续输出日志信息。它的构造函数是:
RotatingFileHandler( filename[, mode[, maxBytes[, backupCount]]])
其中filename和mode两个参数和FileHandler一样。
maxBytes用于指定日志文件的最大文件大小。如果maxBytes为0,意味着日志文件可以无限大,这时上面描述的重命名过程就不会发生。
backupCount用于指定保留的备份文件的个数。比如,如果指定为2,当上面描述的重命名过程发生时,原有的chat.log.2并不会被更名,而是被删除。
4) logging.handlers.TimedRotatingFileHandler
这个Handler和RotatingFileHandler类似,不过,它没有通过判断文件大小来决定何时重新创建日志文件,而是间隔一定时间就 自动创建新的日志文件。重命名的过程与RotatingFileHandler类似,不过新的文件不是附加数字,而是当前时间。它的构造函数是:
TimedRotatingFileHandler( filename [,when [,interval [,backupCount]]])
其中filename参数和backupCount参数和RotatingFileHandler具有相同的意义。
interval是时间间隔。
when参数是一个字符串。表示时间间隔的单位,不区分大小写。它有以下取值:
S 秒
M 分
H 小时
D 天
W 每星期(interval==0时代表星期一)
midnight 每天凌晨
文件自动截断例子
1 import logging 2 3 from logging import handlers 4 5 logger = logging.getLogger(__name__) 6 7 log_file = "timelog.log" 8 #fh = handlers.RotatingFileHandler(filename=log_file,maxBytes=10,backupCount=3) 9 fh = handlers.TimedRotatingFileHandler(filename=log_file,when="S",interval=5,backupCount=3) 10 11 12 formatter = logging.Formatter('%(asctime)s %(module)s:%(lineno)d %(message)s') 13 14 fh.setFormatter(formatter) 15 16 logger.addHandler(fh) 17 18 19 logger.warning("test1") 20 logger.warning("test12") 21 logger.warning("test13") 22 logger.warning("test14")
re模块
常用正则表达式符号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
'.' 默认匹配除
之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行 '^' 匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r "^a" , "
abc
eee" ,flags = re.MULTILINE) '$' 匹配字符结尾,或e.search( "foo$" , "bfoo
sdfsf" ,flags = re.MULTILINE).group()也可以 '*' 匹配 * 号前的字符 0 次或多次,re.findall( "ab*" , "cabb3abcbbac" ) 结果为[ 'abb' , 'ab' , 'a' ] '+' 匹配前一个字符 1 次或多次,re.findall( "ab+" , "ab+cd+abb+bba" ) 结果[ 'ab' , 'abb' ] '?' 匹配前一个字符 1 次或 0 次 '{m}' 匹配前一个字符m次 '{n,m}' 匹配前一个字符n到m次,re.findall( "ab{1,3}" , "abb abc abbcbbb" ) 结果 'abb' , 'ab' , 'abb' ] '|' 匹配|左或|右的字符,re.search( "abc|ABC" , "ABCBabcCD" ).group() 结果 'ABC' '(...)' 分组匹配,re.search( "(abc){2}a(123|456)c" , "abcabca456c" ).group() 结果 abcabca456c 'A' 只从字符开头匹配,re.search( "Aabc" , "alexabc" ) 是匹配不到的 '' 匹配字符结尾,同$ 'd' 匹配数字 0 - 9 'D' 匹配非数字 'w' 匹配[A - Za - z0 - 9 ] 'W' 匹配非[A - Za - z0 - 9 ] 's' 匹配空白字符、 、
、
, re.search( "s+" , "ab c1
3" ).group() 结果 ' ' '(?P<name>...)' 分组匹配 re.search( "(?P<province>[0-9]{4})(?P<city>[0-9]{2})(?P<birthday>[0-9]{4})" , "371481199306143242" ).groupdict( "city" ) 结果{ 'province' : '3714' , 'city' : '81' , 'birthday' : '1993' } |
最常用的匹配语法
1
2
3
4
5
|
re.match 从头开始匹配 re.search 匹配包含 re.findall 把所有匹配到的字符放到以列表中的元素返回 re.splitall 以匹配到的字符当做列表分隔符 re.sub 匹配字符并替换 |
反斜杠的困扰
与大多数编程语言相同,正则表达式里使用""作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\"表示。同样,匹配一个数字的"\d"可以写成r"d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
仅需轻轻知道的几个匹配模式
1
2
3
|
re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同) M(MULTILINE): 多行模式,改变 '^' 和 '$' 的行为(参见上图) S(DOTALL): 点任意匹配模式,改变 '.' 的行为 |