• bzoj1146


    这道题和bzoj2588很像,是动态区间第K大的变形。

    先求DFS序,一棵子树的DFS是连续的,不妨记为[l,r],我们维护前缀和,在l处+1,在r+1处-1。
    变成动态区间第K大的经典问题,用树状数组套线段树。
    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<fstream>
    #include<algorithm>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<map>
    #include<utility>
    #include<set>
    #include<bitset>
    #include<vector>
    #include<functional>
    #include<deque>
    #include<cctype>
    #include<climits>
    #include<complex>
    //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj
     
    using namespace std;
    
    typedef long long LL;
    typedef double DB;
    typedef pair<int,int> PII;
    typedef complex<DB> CP;
    
    #define mmst(a,v) memset(a,v,sizeof(a))
    #define mmcy(a,b) memcpy(a,b,sizeof(a))
    #define re(i,a,b)  for(i=a;i<=b;i++)
    #define red(i,a,b) for(i=a;i>=b;i--)
    #define fi first
    #define se second
    #define m_p(a,b) make_pair(a,b)
    #define SF scanf
    #define PF printf
    #define two(k) (1<<(k))
    
    template<class T>inline T sqr(T x){return x*x;}
    template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
    template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;}
    
    const DB EPS=1e-9;
    inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;}
    const DB Pi=acos(-1.0);
    
    inline int gint()
      {
            int res=0;bool neg=0;char z;
            for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
            if(z==EOF)return 0;
            if(z=='-'){neg=1;z=getchar();}
            for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar());
            return (neg)?-res:res; 
        }
    inline LL gll()
      {
          LL res=0;bool neg=0;char z;
            for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
            if(z==EOF)return 0;
            if(z=='-'){neg=1;z=getchar();}
            for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar());
            return (neg)?-res:res; 
        }
    
    const int maxN=80000;
    const int maxQ=80000;
    const int maxcnt=maxN+maxQ;
    
    int N,Q;
    int T[maxN+100];
    int first[maxN+100],now;
    struct Tedge{int v,next;}edge[2*maxN+100];
    struct Tdata{int k,a,b;inline void input(){k=gint();a=gint();b=gint();}}data[maxQ+100];
    int bak[maxcnt+100],cnt;
    
    inline void addedge(int u,int v){now++;edge[now].v=v;edge[now].next=first[u];first[u]=now;}
    
    int g,idx[maxN+100],l[maxN+100],r[maxN+100];
    int vis[maxN+100];
    int top,sta[maxN+100],last[maxN+100];
    int dep[maxN+100],fa[maxN+100],jump[31][maxN+100];
    int head,tail,que[maxN+100];
    inline void DFS()
      {
          int j;
          g=0;
          vis[sta[top=1]=1]=1;
          last[1]=first[1];
            idx[1]=++g;
            fa[1]=0;
            dep[1]=1;
            jump[0][1]=1;re(j,1,30)jump[j][1]=jump[j-1][jump[j-1][1]];
            while(top>=1)
              {
                  int u=sta[top],&i=last[top],v;
                  for(v=edge[i].v;i!=-1;i=edge[i].next,v=edge[i].v)if(!vis[v])
                    {
                        vis[sta[++top]=v]=1;
                        last[top]=first[v];
                        idx[v]=++g;
                        fa[v]=u;
                        dep[v]=dep[u]+1;
                        jump[0][v]=u;re(j,1,30)jump[j][v]=jump[j-1][jump[j-1][v]];
                        break;
                    }
                  if(i==-1)top--;
              }
            mmst(vis,0);
            vis[que[head=tail=0]=1]=1;
            while(head<=tail)
              {
                  int u=que[head++],i,v;
                  for(i=first[u],v=edge[i].v;i!=-1;i=edge[i].next,v=edge[i].v)if(!vis[v])vis[que[++tail]=v]=1;
              }
            red(j,tail,0)
              {
                  int u=que[j],i,v;
                  l[u]=r[u]=idx[u];
                  for(i=first[u],v=edge[i].v;i!=-1;i=edge[i].next,v=edge[i].v)if(v!=jump[0][u])upmin(l[u],l[v]),upmax(r[u],r[v]);
              }
        }
                
    struct Tnode{int son[2],val;}sn[12000000];int cn;
    inline int newnode(){++cn;sn[cn].son[0]=sn[cn].son[1]=sn[cn].val=0;return cn;}
    inline void update(int p,int l,int r,int x,int val)
      {
          while(l<=r)
            {
                sn[p].val+=val;
                if(l==r)break;
                int mid=(l+r)/2,f=(x>mid);
                if(!sn[p].son[f])sn[p].son[f]=newnode();
                p=sn[p].son[f];
                if(x<=mid)r=mid; else l=mid+1;
            }
        }
    
    int tree[maxN+100];
    #define lowbit(a) (a&(-a))
    inline void change(int a,int x,int val)
      {
          for(;a<=g;a+=lowbit(a))
              update(tree[a],1,cnt,x,val);
      }
    int r1,r2,r3,r4;
    int t1[maxN+100],t2[maxN+100],t3[maxN+100],t4[maxN+100];
    inline int ask(int p1,int p2,int p3,int p4,int k)
      {
          int i,l=1,r=cnt;
          r1=0;for(;p1>=1;p1-=lowbit(p1))t1[++r1]=tree[p1];
          r2=0;for(;p2>=1;p2-=lowbit(p2))t2[++r2]=tree[p2];
          r3=0;for(;p3>=1;p3-=lowbit(p3))t3[++r3]=tree[p3];
          r4=0;for(;p4>=1;p4-=lowbit(p4))t4[++r4]=tree[p4];
          while(l<=r)
            {
                if(l==r)return bak[l];
                int mid=(l+r)/2,as=0;
                re(i,1,r1)as+=sn[sn[t1[i]].son[1]].val;
                re(i,1,r2)as+=sn[sn[t2[i]].son[1]].val;
                re(i,1,r3)as-=sn[sn[t3[i]].son[1]].val;
                re(i,1,r4)as-=sn[sn[t4[i]].son[1]].val;
                if(k<=as)
                  {
                      l=mid+1;
                      re(i,1,r1)t1[i]=sn[t1[i]].son[1];
                    re(i,1,r2)t2[i]=sn[t2[i]].son[1];
                    re(i,1,r3)t3[i]=sn[t3[i]].son[1];
                    re(i,1,r4)t4[i]=sn[t4[i]].son[1];
                  }
                else
                  {
                      k-=as;
                      r=mid;
                      re(i,1,r1)t1[i]=sn[t1[i]].son[0];
                    re(i,1,r2)t2[i]=sn[t2[i]].son[0];
                    re(i,1,r3)t3[i]=sn[t3[i]].son[0];
                    re(i,1,r4)t4[i]=sn[t4[i]].son[0];
                  }
            }
      }
    
    inline void swim(int &x,int H){int i;for(i=0;H!=0;H>>=1,i++)if(H&1)x=jump[i][x];}
    inline int ask_lca(int x,int y)
      {
          if(dep[x]<dep[y])swap(x,y);
          swim(x,dep[x]-dep[y]);
          if(x==y)return x;
          int i;
          red(i,30,0)if(jump[i][x]!=jump[i][y]){x=jump[i][x];y=jump[i][y];}
          return jump[0][x];
      }
    
    int main()
      {
          freopen("bzoj1146.in","r",stdin);
          freopen("bzoj1146.out","w",stdout);
          int i;
          N=gint();Q=gint();
          re(i,1,N)T[i]=gint();
          mmst(first,-1);now=-1;
          re(i,1,N-1){int x=gint(),y=gint();addedge(x,y);addedge(y,x);}
          re(i,1,Q)data[i].input();
          re(i,1,N)bak[++cnt]=T[i];
          re(i,1,Q)if(data[i].k==0)bak[++cnt]=data[i].b;
          sort(bak+1,bak+cnt+1);
          cnt=unique(bak+1,bak+cnt+1)-bak-1;
          re(i,1,N)T[i]=lower_bound(bak+1,bak+cnt+1,T[i])-bak;
          re(i,1,Q)if(data[i].k==0)data[i].b=lower_bound(bak+1,bak+cnt+1,data[i].b)-bak;
          DFS();
          re(i,1,g)tree[i]=newnode();
          re(i,1,N)
              {
                  change(l[i],T[i],1);
                    change(r[i]+1,T[i],-1);
                }
          re(i,1,Q)
            {
                int a=data[i].a,b=data[i].b,k=data[i].k;
                if(k==0)
                  {
                      change(l[a],T[a],-1);change(r[a]+1,T[a],1);
                      T[a]=b;
                      change(l[a],T[a],1);change(r[a]+1,T[a],-1);
                  }
                else
                  {
                      int lca=ask_lca(a,b);
                      if(dep[a]+dep[b]-2*dep[lca]+1<k){printf("invalid request!
    ");continue;}
                      printf("%d
    ",ask(idx[a],idx[b],idx[lca],idx[fa[lca]],k));
                  }
            }
          return 0;
      }
    View Code
  • 相关阅读:
    小小的封装了一个pie的echarts
    recent.css常用的页面初始化样式
    bootstrap表格多样式及代码
    Java内存回收机制
    栈帧
    互斥锁和条件变量
    UML类图的常见关系
    堆栈详解(数据与内存中的存储方式)
    PR消减视频中的鼠标声
    SmartPlant Review 三维视图快捷键
  • 原文地址:https://www.cnblogs.com/maijing/p/4649487.html
Copyright © 2020-2023  润新知