• 冬天来了,用Python看看哪里的人最喜欢吃火锅


    本文仅用于学习和交流使用,不具有任何商业价值,如有问题,请与我联系,我将即时处理。

    数据来源于百度地图。开发者工具就不说了,直接上代码:

     1 """
     2     爬取百度地图全国火锅店并可视化
     3 """
     4 import pprint
     5 
     6 import openpyxl as op
     7 import requests
     8 
     9 # 热门城市
    10 wb_hotCity = op.Workbook() # 工作簿
    11 ws_hotCity = wb_hotCity.create_sheet(index=0)
    12 ws_hotCity.cell(row=1, column=1, value='城市')
    13 ws_hotCity.cell(row=1, column=2, value='数量')
    14 
    15 # 省份
    16 wb_province = op.Workbook() # 工作簿
    17 ws_province = wb_province.create_sheet(index=0) #工作表
    18 ws_province.cell(row=1, column=1, value='省份')
    19 ws_province.cell(row=1, column=2, value='数量')
    20 
    21 # 省份下的市数量
    22 wb_province_cities = op.Workbook()
    23 ws_province_cities = wb_province_cities.create_sheet(index=0)
    24 ws_province_cities.cell(row=1, column=1, value='城市')
    25 ws_province_cities.cell(row=1, column=2, value='数量')
    26 
    27 def get_json():
    28     url = 'https://xx.baixx.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&c=1&wd=火锅店&da_src=shareurl&on_gel=1&l=4&gr=1&b=(6818483.628395475,-1378890.6182441516;19500319.04895588,5539245.839424342)&pn=0&device_ratio=2&auth=G0dY4cVy9WzEHUcbN2egDb@CE3v8H2ESuxLBNRzEzNBtDcnVDpneC@BvYgP1PcGCgYvjPuVtvYgPMGvgWv@uVtvYgPPxRYuVtvYgP@vYZcvWPCuVtvYgP@ZPcPPuVtvYgPhPPyheuVtvhgMuxVVty1uVtCGYuVt1GgvPUDZYOYIZuVt1cv3uVtGccZcuVtPWv3Guxt58Jv7ucvY1SGpuxLt@jUfJxvYlcvIKMNQTXZbegHcEWe1GD8zv7u@ZPuVtc3CuVteuVtegvcguxLBNRzEzNBtquTTGdFrZZWuV&seckey=Ml81XZ+wbx7jyS5hXlEdUOZNM5KJW3eWH1zi1SkgdUw=,2ccphtdcku0z52vCIEYIggYcdu8QHAJF1lQ+5wl2NMlaWIlTiCrONly/LJX4jdosle2Jf9LuHi8DHeLXtZRfnXu5J/0ctPoquwFQq6tZMA4TzSUjV2KQkSKzylzZf30ZOmZRhyug2Upr+mVaZqFcTu6hRc8/N3XYrjIVwQLMken5x8Iaqv13CW13nUMjW9LO&tn=B_NORMAL_MAP&nn=0&u_loc=13182436,2819866&ie=utf-8&t=1637824275666&newfrom=zhuzhan_webmap'
    29     headers = {
    30         'Cookie':cooikes,
    31         'Referer':'https://map.baidu.com/search/xxxx/@13000533.070537817,2742247.240299427,4.95z?querytype=s&c=1&wd=%E7%81%AB%E9%94%85%E5%BA%97&da_src=shareurl&on_gel=1&l=4&gr=1&b=(6818483.628395475,-1378890.6182441516;19500319.04895588,5539245.839424342)&pn=0&device_ratio=2',
    32         'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36',
    33     }
    34     response = requests.get(url=url, headers=headers)
    35     return response.json()
    36 
    37 # 热门城市
    38 def get_hotCities(json_data):
    39     # 获取热门城市数量
    40     hotCities = json_data['content']
    41     for item in hotCities:
    42         cityName = item['name']
    43         num = item['num']
    44         ws_hotCity.append([cityName, num])
    45 
    46 def get_province(json_data):
    47     # 获取其他省市的总数量
    48     moreProvince = json_data['more_city']
    49     for item in moreProvince:
    50         province = item['province'] # 省份
    51         num = item['num'] # 数量
    52         ws_province.append([province, num]) # 各省总数
    53 
    54 def get_cities(json_data):
    55     # 获取省下面市的数量
    56     provinceCities = json_data['more_city']
    57     print(type(provinceCities)) # list
    58     for item in provinceCities:
    59         # print(item['city'])
    60         for needitem in item['city']:
    61             city = needitem['name']
    62             num = needitem['num']
    63             print(city, num)
    64             ws_province_cities.append([city, num]) # 各省下城市总数量
    65 json_data = get_json()
    66 # pprint.pprint(json_data)
    67 if __name__ == "__main__":
    68     get_hotCities(json_data)
    69     get_province(json_data)
    70     get_cities(json_data)
    71     wb_hotCity.save('热门城市火锅店数量.xlsx')
    72     wb_province.save('各省总火锅店数量.xlsx')
    73     wb_province_cities.save('各省城市火锅店数量.xlsx')
    74     wb_hotCity.close()
    75     wb_province.close()
    76     wb_province_cities.close()

    保存结果,三张图:

    虽然数据来源于百度地图,为了学习,用python也做个地图:

     1 """
     2     首先是全国火锅店分布数量
     3 """
     4 import pandas as pd
     5 from pyecharts.charts import Map
     6 from pyecharts.globals import ThemeType
     7 import pyecharts.options as opts
     8 
     9 data = pd.read_excel('各省总火锅店数量.xlsx') #用熊猫读取数据
    10 # 提取出省份和数量
    11 provinceList = data['省份'].tolist() # 将省份名称作为列表
    12 num = data['数量'].tolist() # 将数量也做成列表
    13 print(provinceList)
    14 
    15 provinces = []
    16 # 修正省份参数,因为pyecharts只支持前面有标识的字,内蒙古自治区要处理成内蒙古,广西壮族自治区要处理成广西
    17 for i in provinceList:
    18     if '' and '' in i:
    19         provinces.append(i[:-1])
    20     elif '内蒙古' in i: # 处理内蒙古自治区为内蒙古
    21         neimenggu = i[0:3]
    22         provinces.append(neimenggu)
    23     elif '自治区' in i: # 处理类似广西壮族自治区和宁夏回族自治区之类的字符广西和宁夏
    24         provinces.append(i[0:2])
    25     else:
    26         provinces.append(i[:-1]) # 处理黑龙江省成黑龙江
    27 # print(len(provinceList)) # 比较长度是否相等
    28 # print(len(provinces)) # 比较长度是否相等
    29 
    30 # 开始绘图
    31 map = (
    32     Map(init_opts=opts.InitOpts(width='1280px',height='960px', theme=ThemeType.VINTAGE))
    33     .add('数量', [list(z) for z in zip(provinces, num)], 'china') # 中国地图
    34     .set_global_opts(
    35         title_opts=opts.TitleOpts(title='全国火锅店分布数量',),
    36         legend_opts=opts.LegendOpts(pos_left='10%', pos_top='10%')
    37     )
    38 ).render('全国火锅店分布数量.html')

    运行截图:

     

     数据发现,全国火锅店数量最多的不是四川,而是山东,做下山东地图可视化:

     1 """
     2 做一下全国火锅店数量最多的省的可视化
     3 """
     4 import pandas as pd
     5 from pyecharts.charts import Map
     6 import pyecharts.options as opts
     7 from pyecharts.globals import ThemeType
     8 
     9 # 读取数据
    10 data = pd.read_excel('各省城市火锅店数量.xlsx')
    11 cities = data['城市'].tolist()
    12 counts = data['数量'].tolist()
    13 # 数据发现山东最多,做下山东的图
    14 city = []
    15 count = []
    16 flag = 0
    17 for i in range(0, len(cities)):
    18     if cities[i] == '青岛市':
    19         flag = 1
    20     if flag:
    21         city.append(cities[i])
    22         count.append(int(counts[i]))
    23     if cities[i] == '日照市':
    24         city.append(cities[i]) # 提取日照
    25         count.append(int(counts[i])) # 将日照的数量提取
    26         break
    27 
    28 print(city, count) #打印符合预期
    29 
    30 c = (
    31     Map(init_opts=opts.InitOpts(width='1280px', height='960px', theme=ThemeType.VINTAGE))
    32         .add("山东火锅分布", [list(z) for z in zip(city, count)], "山东")
    33         .set_global_opts(
    34             title_opts=opts.TitleOpts(title="山东火锅店数量分布"),
    35             visualmap_opts=opts.VisualMapOpts(),
    36             legend_opts=opts.LegendOpts(pos_left='5%', pos_top='10%'),
    37     )
    38 ).render("山东火锅店数量分布.html")

    截图:

     收工。

  • 相关阅读:
    java Thread之ThreadLocal(线程局部变量)
    java设计模式之接口隔离原则(ISP)
    java设计模式之开放关闭原则(OCP)
    java设计模式之迪米特法则(LoD)
    java设计模式之单一职责原则(SRP)
    android点滴(25)之 originalpackage
    VC 注册表操作
    java设计模式之依赖倒置原则(DIP)
    DFT 离散傅里叶变换 与 补零运算
    序列循环移位
  • 原文地址:https://www.cnblogs.com/mafu/p/15603419.html
Copyright © 2020-2023  润新知