• Tesseract训练中文字体识别


    注:目前仅说明windows下的情况

    前言

    网上已经有大量的tesseract的识别教程,但是主要有两个缺点:

    • 大多数比较老,有部分内容已经不适用。
    • 大部分只是就英文的训练进行探索,很少针对中文的训练。
      接下来尽可能详细的介绍自己tesseract训练中文识别的经验。

    本文中使用的tesseract版本为3.05;
    为什么用3.05呢?
    从官方文档上看4.0版本(windows版本于2017年1月30号发布)显著的提高了识别率,同时也加大了性能的消耗。理论上我是应该用4.0。但这不是重点。重点是有windows的版本有诡异的bug! 花了好久没有解决。
    不过还好,4.0支持3.05版本的所有语法。换而言之,下面的所有内容在4.0都是可以用的。

    工具准备

    安装过程

     
    点击下一步
     
    勾选上同意,然后点击下一步
     
    点击下一步
     
    既然是要训练中文,记得勾选 additional language data
     
    找到中文简体和中文繁体,按需勾选,然后点下一步

    可以先不勾选,因为这样直接下载语言的包实在太慢。可以从网页上直接下载语言包,然后等程序安装好后,放入安装目录下tessdata目录下面

     
    目录。。毕竟是你的电脑,随便选,你开心就好,然后点下一步
     
    点击install

    安装完毕。

    字体训练

    我准备了一份含汉语7000字和大小写英文字母和数字的文档.如果你需要训练所有中文的话,请将所有docx文件内所有字改成你要训练的字体。然后转化成tif格式的图片。

    步骤(转自tesseract的github)

    1. Prepare training text.
      准备你的训练文本
    2. Render text to image + box file. (Or create hand-made box files for existing image data.)
      将文本转为image+box文件.(如果你已经有image文件的话,只需要手动生成box文件)
    3. Make unicharset file.
      生成unicharset文件
    4. Optionally make dictionary data.
      有选择性的生成字典数据
    5. Run tesseract to process image + box file to make training data set.
      运行tesseract来处理之前的image+box文件生成一个训练数据集合
    6. Run training on training data set.
      在训练数据集合的基础上进行训练
    7. Combine data files.
      合并数据文件

    下面所列的步骤其实稍有不同。

    如果有多张图片[可选]

    如果是其他图片格式,将其转为tif格式。附上一个在线地址

    使用之前安装jTessBoxEditor工具将多张图片合并为一张(菜单栏 Tools → Merge TIFF)。并按照格式 [lang].[fontname].exp[num] 重命名合并后的文件,这里我命名为 chi.fangzheng.exp0.tif

    为了方便下文中输入路径,在本文中将改好的tif图拷贝至tesseract安装之后的目录下。

    步骤二:生成box文件

    贴一张官网命令:


     
    官方命令

    输入路径和输出路径文件名(除了后缀)应该保持一致。
    因为我们是要训练中文所以还需要加上-l chi_sim(l代表language chi_sim是放在tessdata目录下中文简体字体名的前缀),实际命令如下所示

    tesseract.exe chi.fangzheng.exp0.tif chi.fangzheng.exp0 -l chi_sim batch.nochop makebox
    

    步骤二:校正box文件

    打开之前安装的jTessBoxEditor,

     
    点击open,然后找到tif图片文件
     
    通过这部分区域的按钮对识别结果进行校正

    校正完之后点击保存

    步骤三:生成unicharset文件

    生成tr文件

    使用刚才修改正确后的 box 文件,对 Tesseract 进行训练,生成 .tr 文件:

    //tesseract.exe [tif图片文件名] [生成的tr文件名] nobatch box.train
    tesseract.exe chi.fangzheng.exp0.tif chi.fangzheng.exp0  nobatch box.train
    

    生成Character集合

    //unicharset_extractor.exe [box文件名]
    unicharset_extractor.exe chi.fangzheng.exp0.box
    

    如果有多个图片的话,则需要合并生成1个Character集合,命令如下

    //unicharset_extractor.exe [1个box文件名] [1个box文件名] .....
    unicharset_extractor.exe chi.fangzheng.exp0.box chi.fangzheng.exp1.box
    

    创建字体特征文件

    定义字体特征文件,Tesseract-OCR 3.01 以上的版本在训练之前需要创建一个名称为 font_properties 的字体特征文件。font_properties 不含有 BOM 头,文件内容格式如下:

    <fontname> <italic> <bold> <fixed> <serif> <fraktur>
    //其中 fontname 为字体名称,必须与 [lang].[fontname].exp[num].box 中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、<fraktur> 的取值为 1 或 0,表示字体是否具有这些属性。
    
    //本次示例
    fangzheng 0 0 0 0 0
    

    步骤五:生成字典数据

    如果是单个依次输入下面两条命令,多个文件则输入多个tr

    mftraining.exe -F font_properties -U unicharset -O chi.unicharset chi.fangzheng.exp0.tr
    //mftraining.exe -F font_properties -U unicharset -O chi.unicharset  [第一个tr] [第二个]...
    
    cntraining.exe chi.fangzheng.exp0.tr
    //cntraining.exe [第一个tr] [第二个]...
    

    接下来手工修改 Clustering 过程生成的 4 个文件(inttemp、pffmtable、normproto、shapetable)的名称为 [lang].xxx。例如我这里改为 chi.inttemp、chi.pffmtable、chi.normproto、chi.shapetable。

    步骤七:合并数据文件

    生成语言文件:

    combine_tessdata chi.
    
     
     

    需确认打印结果中的 Offset 1、3、4、5、13 这些项不是 -1。这样,一个新的语言文件就生成了。

    chi.traineddata 便是最终生成的语言文件,将生成的 chi.traineddata 文件拷贝到 tessdata 目录下,就可以用它来进行字符识别了。

    我们可以用刚刚的tif文件来测试一下识别能力:

    //tesseract [图片文件名] [需要输出的文本文档的文件名] -l [识别的语言]
    tesseract chi.fangzheng.exp0.tif out -l chi


    作者:aliyu
    链接:https://www.jianshu.com/p/31afd7fc5813
    來源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 相关阅读:
    基于jQuery解决ios10以上版本缩放问题
    移动端h5模拟长按事件
    一篇讲SpringBoot+kafka很好的文章
    Liquibase+SpringBoot的简单使用笔记!update+rollback
    集合异同,找出新增元素和删除元素
    spring-security-结合JWT的简单demo
    IDEA SpringBoot+JPA+MySql+Redis+RabbitMQ 秒杀系统
    提取swagger内容到csv表格,excel可打开
    spring mvc 黑马 笔记
    手机页面图片显示高低不一致
  • 原文地址:https://www.cnblogs.com/mafeng/p/8124159.html
Copyright © 2020-2023  润新知