Best Cow Fences
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 8772 | Accepted: 2802 |
Description
Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
Input
* Line 1: Two space-separated integers, N and F.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
Output
* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.
Sample Input
10 6 6 4 2 10 3 8 5 9 4 1
Sample Output
6500
题目大意:给你一个有n个数的序列,让你找到不小于f个数的序列中最大的平均值。
解题方法:类似于最大连续子段和,如果前面子段的平均值小于紧接着后面长度不小于f的子段,则将前面的子段舍弃,否则将前面的子段保留。
#include <stdio.h> #include <iostream> #include <string.h> using namespace std; int num[100020]; int sum[100020]; int main() { int n, f; int ans; while(scanf("%d%d", &n, &f) != EOF) { ans = -1; memset(sum, 0, sizeof(sum)); for (int i = 0; i < n; i++) { scanf("%d", &num[i + 1]); sum[i + 1] = sum[i] + num[i + 1]; } int i, j; for (i = 0, j = 0; i <= n - f; i++) { if (i > j && (sum[i] - sum[j]) * (i + f - j) < (sum[i + f] - sum[j]) * (i - j)) { j = i;//如果i和j之间的子段平均值小于i到i+f之间的平均值,则将舍弃i和j之间的子段
}
if (ans < 1000 * (sum[i + f] - sum[j]) / (i + f - j)) { ans = 1000 * (sum[i + f] - sum[j]) / (i + f - j); } } printf("%d ", ans); } return 0; }