• POJ 1745 Divisibility


    Divisibility
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 9476   Accepted: 3300

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible
    #include <stdio.h>
    #include <iostream>
    using namespace std;
    
    int dp[10001][101] = {0};
    int num[10001] = {0};
    
    int main()
    {
        int k, n;
        scanf("%d%d", &n, &k);
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &num[i]);
            if (num[i] < 0)
            {
                num[i] *= -1;
            }
            num[i] = num[i] % k;
        }
        dp[0][num[0]] = 1;
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j <= k; j++)
            {
                if (dp[i - 1][j])
                {
                    dp[i][(j + num[i]) % k] = 1;
                    dp[i][(k + j - num[i]) % k] = 1;
                }
            }
        }
        if(dp[n-1][0])  
        {
            printf("Divisible
    "); 
        }
        else  
        {
            printf("Not divisible
    ");  
        }
        return 0;
    }
  • 相关阅读:
    不可错过的几款GitHub开源项目
    Android OTG之USB转串口模块通讯
    Multiple dex files define Lokhttp3/internal/wsWebSocketProtocol
    npm install安装依赖包失败
    Jquery 添加删除属性、添加删除class、添加删除Css(转载)
    jquery 获取一个元素的坐标位置
    Axure9 最新版的授权码(转)
    js实现上移 下移 置顶 置底操作
    iframe子页面获取父页面元素和window对象
    window.onresize与$(window).resize()的用法
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3202402.html
Copyright © 2020-2023  润新知