To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36422 | Accepted: 19130 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15.
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
传说中经典的DP问题,昨天比赛时为了解一道看起来类似的题直接网搜了此题的结题报告,发现暴力转化为一维数组求最长子序列的思想果然高明(可是比赛那道题还是TLE了T^T)
二维数组转化以为数组举例:
0 -2 -7 0
9 2 -6 2
可以转化为:
9 0 -13 2
也就是把纵向的一列求和,然后再求最大子序列和即为这个最大子矩阵的和
求最大子序列和用了一点DP思想,DP之前也没怎么写过,每次想DP总想着区间,这里的DP是用点来做的
用一个数组f[i]代表数组s中以s[i]结尾的最大子序列的和,这样得到了状态转移方程:
f[i]=f[i-1]+f[i]>f[i]?f[i-1]+f[i]:f[i];
代码如下:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 5 using namespace std; 6 7 long g[101][101]; 8 long s[101]; 9 long f[101]; 10 11 long FindMax(int n) 12 { 13 memset(f,0,sizeof(f)); 14 for(int i=1;i<=n;i++) 15 f[i]=(f[i-1]+s[i]>s[i]?f[i-1]+s[i]:s[i]); 16 long maxn=f[1]; 17 for(int i=2;i<=n;i++) 18 if(f[i]>maxn) 19 maxn=f[i]; 20 return maxn; 21 } 22 23 int main() 24 { 25 int n; 26 long ans,result; 27 28 while(scanf("%d",&n)==1) 29 { 30 for(int i=1;i<=n;i++) 31 for(int j=1;j<=n;j++) 32 scanf("%ld",&g[i][j]); 33 for(int len=1;len<=n;len++) 34 { 35 for(int y=1;y<=n-len+1;y++) 36 { 37 for(int x=1;x<=n;x++) 38 s[x]=0; 39 for(int x=1;x<=n;x++) 40 for(int t=y;t<y+len;t++) 41 s[x]+=g[x][t]; 42 result=FindMax(n); 43 if(len==1&&y==1) 44 ans=result; 45 else 46 if(ans<result) 47 ans=result; 48 } 49 } 50 printf("%ld ",ans); 51 } 52 53 return 0; 54 }