• [LeetCode 85] Maximal Rectangle


    Given a rows x cols binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

     

    Example 1:

    Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
    Output: 6
    Explanation: The maximal rectangle is shown in the above picture.
    

    Example 2:

    Input: matrix = []
    Output: 0
    

    Example 3:

    Input: matrix = [["0"]]
    Output: 0
    

    Example 4:

    Input: matrix = [["1"]]
    Output: 1
    

    Example 5:

    Input: matrix = [["0","0"]]
    Output: 0
    

     

    Constraints:

    • rows == matrix.length
    • cols == matrix.length
    • 0 <= row, cols <= 200
    • matrix[i][j] is '0' or '1'.
     
    This problem's optimal solution builds on its related problem: Largest Rectangle in Histogram. If we treat each row as the new base line of a histogram, we can get the largest rectangle in O(Col) time. We need to do this O(Row) time by keeping a prefix sum array h[], where h[i] is the height of the ith column in the current histogram. 
     
    The runtime is O(Row * Col) and is BCR.
     
    class Solution {
        public int maximalRectangle(char[][] matrix) {
            if(matrix.length == 0) {
                return 0;
            }
            int m = matrix.length, n = matrix[0].length, ans = 0;
            int[] h = new int[n];
            for(int i = 0; i < m; i++) {
                for(int j = 0; j < n; j++) {
                    h[j] = (matrix[i][j] == '0' ? 0 : h[j] + 1);
                }
                ans = Math.max(ans, largestRectangeleHistogram(h));
            }
            return ans;
        }
        private int largestRectangeleHistogram(int[] h) {
            ArrayDeque<Integer> dq = new ArrayDeque<>();
            dq.addLast(-1);
            int best = 0;
            for(int i = 0; i < h.length; i++) {
                while(dq.peekLast() >= 0 && h[i] < h[dq.peekLast()]) {
                    int j = dq.pollLast();
                    best = Math.max(best, h[j] * (i - 1 - dq.peekLast()));
                }
                dq.addLast(i);
            }
            while(dq.peekLast() >= 0) {
                int j = dq.pollLast(); 
                best = Math.max(best, h[j] * (h.length - 1 - dq.peekLast()));
            }
            return best;
        }
    }
  • 相关阅读:
    原生searchView 自定义样式
    面试问题总结
    Android Studio开发环境搭建
    JAVA基本程序设计结构
    JAVA大数使用
    sql
    普通树的递归遍历
    6_43_递归交换二叉树中所有节点的左右子树
    6_42_二叉树递归求叶子节点个数
    6_44_二叉树中值为x的节点为根的子树的深度
  • 原文地址:https://www.cnblogs.com/lz87/p/7395928.html
Copyright © 2020-2023  润新知