• [LintCode] Jump Game


    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Determine if you are able to reach the last index.

    This problem have two method which is Greedy and Dynamic Programming.

    The time complexity of Greedy method is O(n).

    The time complexity of Dynamic Programming method is O(n^2).

    We manually set the small data set to allow you pass the test in both ways. This is just to let you learn how to use this problem in dynamic programming ways. If you finish it in dynamic programming ways, you can try greedy method to make it accept again.

    Example

    A = [2,3,1,1,4], return true.

    A = [3,2,1,0,4], return false.

    Solution 1.  Recursion without memoization 

    Recursive formula: f(n) =  true if there is at least one i (from 0 to n - 1) that satisfies i + A[i] >= n and f(i) = true.

              f(n) = false if there is no such i.

    This solution is not efficient as it does duplicate work to compute the same subproblems over and over.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         return helper(A, A.length - 1);
     7     }
     8     private boolean helper(int[] A, int idx){
     9         if(idx == 0){
    10             return true;
    11         }
    12         boolean ret = false;
    13         for(int i = 0; i < idx; i++){
    14             if(i + A[i] >= idx){
    15                 if(helper(A, i)){
    16                     return true;
    17                 }
    18             }
    19         }
    20         return false;
    21     }
    22 }

    Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space 

    The natural way of optimizing solution 1 is to avoid duplicated work by using memoization.

     1 public class Solution {
     2     private boolean[] T;
     3     private boolean[] flag;
     4     public boolean canJump(int[] A) {
     5         if(A == null || A.length == 0){
     6             return false;
     7         }
     8         T = new boolean[A.length];
     9         flag = new boolean[A.length];
    10         T[0] = true;
    11         flag[0] = true;
    12         return helper(A, A.length - 1);
    13     }
    14     private boolean helper(int[] A, int idx){
    15         if(flag[idx]){
    16             return T[idx];
    17         }
    18         boolean ret = false;
    19         for(int i = 0; i < idx; i++){
    20             if(i + A[i] >= idx){
    21                 if(helper(A, i)){
    22                     T[idx] = true;
    23                     flag[idx] = true;
    24                     return true;
    25                 }
    26             }
    27         }
    28         T[idx] = false;
    29         flag[idx] = true;
    30         return false;
    31     }
    32 }

    Solution 3. Bottom up dynamic programming, O(n^2) runtime, O(n) space.

    An equivalent iterative bottom up dp solution is implemented as follows. 

    Both solution 2 and 3 can't be optimized further more on extra space usage as calculating a subproblem

    possibly requires the results of all smaller subproblems. 

    However, runtime can be further optimized to O(n) using Greedy algorithm.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         int n = A.length;
     7         boolean f[] = new boolean[n];
     8         f[0] = true;
     9         
    10         for(int i = 1; i < n; i++){
    11             for(int j = 0; j < i; j++){
    12                 if(j + A[j] >= i){
    13                     f[i] = f[i] || f[j];                 
    14                 }
    15             }
    16             if(!f[i]){
    17                 return false;
    18             }
    19         }
    20         return true;
    21     }
    22 }

    Solution 4. Greedy Algorithm, O(n)

    Stay tuned...

    Related Problems 

    Jump Game II

    Frog Jump

  • 相关阅读:
    ASFNU SC Day6
    ASFNU SC Day3
    ASFNU SC Day2
    ASFNU SC Day1
    2017-9-3 校内模拟T2取数win
    2017-9-3 校内模拟T1卡片card
    (补题)苗条的树(poj_3522)
    跳跳棋(9018_1563)(BZOJ_2144)
    Java之JSP和Servlet基础知识。
    JSP中的九大内置对象
  • 原文地址:https://www.cnblogs.com/lz87/p/7057585.html
Copyright © 2020-2023  润新知