• Patchwork(2013年)--CNV检测方法流程


    文章题目:Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue

    特点: 可以检测配对样本,也可以检测带reference的tumor样本。但是没有考虑肿瘤异质性问题。使用DNAcopy包的CBS分割,control-freec的GC校正方法。bin size=200bp。

    http://patchwork.r-forge.r-project.org/#tabr10

    Patchwork的输入:

    1),An aligned and sorted tumor BAM file. (.bai, pileup of bam, .vcf)

    2)a reference or matched normal BAMfile

    安装:

    install.packages("patchworkCG", repos="http://R-Forge.R-project.org")
    
    library(patchworkCG)
    
    #产生输入文件:
    Samtools sort <tumorfile>.bam <tumorfile.sorted>.bam
    Samtools index <tumor_or_normalfile>.bam
    Samtools mpileup -f <humangenome>.fasta <tumor_or_normal>.bam > mpileup
    Samtools mpileup -uf <humangenome>.fasta <tumor_or_normal>.bam | bcftools view -bvcg > <unfiltered_output>.bcf
    Bcftools view <unfiltered_output>.bcf | vafutils.pl varFilter -D100 > <output>.vcf
    方法流程:
    Library(patchwork)
    Library(patchworkData)
    ?patchwork.plot
    patchwork.plot(Tumor.bam="patchwork.example.bam",Tumor.pileup="patchwork.example.pileup",Reference="../HCC1954/datasolexa.RData")
    ###To infer the arguments for patchwork.copynumbers() you will need to look at one of the chromosomal plots generated using patchwork.plot(). The structure and relationships in the plot can be interpreted to figure out the most probable locations of the allele-specific copy numbers
    patchwork.copynumbers(CNfile=”path/to/prefix_copynumbers.Rdata”,cn2=0.8,delta=0.28,het=0.21,hom=0.79)
  • 相关阅读:
    BN
    框架中的DDP和buffer
    深度学习框架中的并行
    Transformer
    自监督表示学习Paper
    半监督学习paper阅读
    目标检测经典paper
    STM32_从SystemInit、__main到main() 已修正
    STM32启动代码分析及其汇编学习-ARM
    Rust 及其包管理Cargo的安装使用
  • 原文地址:https://www.cnblogs.com/lyyao/p/10535090.html
Copyright © 2020-2023  润新知