• 数据结构时间复杂度计算总结


    1:概念:时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)

    5*n^5+10000000的时间复杂度是n^5

    2:计算方法时间复杂度就是一个算法中的语句执行次数最多的一个。

    1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必
    要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费
    的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

    2:
    2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做
    :T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,
    算法的时间复杂度越低,算法的效率越高。
    3:定义:
    :如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

    当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

    我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

    此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

    “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

    这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

    O(1)

    Temp=i;i=j;j=temp;                    

    以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

    O(n^2)

    2.1. 交换i和j的内容
         sum=0;                 (一次)
         for(i=1;i<=n;i++)       (n次 )
            for(j=1;j<=n;j++) (n^2次 )
             sum++;       (n^2次 )
    解:T(n)=2n^2+n+1 =O(n^2)

    2.2.   
        for (i=1;i<n;i++)
        {
            y=y+1;         ①   
            for (j=0;j<=(2*n);j++)    
               x++;        ②      
        }         
    解: 语句1的频度是n-1
              语句2的频度是(n-1)*(2n+1)=2n^2-n-1
              f(n)=2n^2-n-1+(n-1)=2n^2-2
              该程序的时间复杂度T(n)=O(n^2).         

    O(n)      
                                                          
    2.3.
        a=0;
        b=1;                   
     

     

  • 相关阅读:
    Java 同步器
    Python: Soft_max 分类器
    【五年】Java打怪升级之路
    关于Csdn水区被占据一事 (2015-08-01)
    Jquery—Jquery中的(function($){...})(jQuery)
    AjaxAnyWhere 实现页面局部刷新,局部分页
    Erlang Port 小心换行
    基于Unity3D云人脸监測技术
    HTML中的超链接
    poj 1979 dfs
  • 原文地址:https://www.cnblogs.com/lyxcode/p/8024736.html
Copyright © 2020-2023  润新知