树形选择排序 (tree selection sort) 具体解释 及 代码(C++)
本文地址: http://blog.csdn.net/caroline_wendy
算法逻辑: 依据节点的大小, 建立树, 输出树的根节点, 并把此重置为最大值, 再重构树.
由于树中保留了一些比較的逻辑, 所以降低了比較次数.
也称锦标赛排序, 时间复杂度为O(nlogn), 由于每一个值(共n个)须要进行树的深度(logn)次比較.
參考<数据结构>(严蔚敏版) 第278-279页.
树形选择排序(tree selection sort)是堆排序的一个过渡, 并非核心算法.
可是全然依照书上算法, 实现起来极其麻烦, 差点儿没有不论什么人实现过.
须要记录建树的顺序, 在重构时, 才干降低比較.
本着娱乐和分享的精神, 应人之邀, 简单的实现了一下.
代码:
/* * TreeSelectionSort.cpp * * Created on: 2014.6.11 * Author: Spike */ /*eclipse cdt, gcc 4.8.1*/ #include <iostream> #include <vector> #include <stack> #include <queue> #include <utility> #include <climits> using namespace std; /*树的结构*/ struct BinaryTreeNode{ bool from; //推断来源, 左true, 右false int m_nValue; BinaryTreeNode* m_pLeft; BinaryTreeNode* m_pRight; }; /*构建叶子节点*/ BinaryTreeNode* buildList (const std::vector<int>& L) { BinaryTreeNode* btnList = new BinaryTreeNode[L.size()]; for (std::size_t i=0; i<L.size(); ++i) { btnList[i].from = true; btnList[i].m_nValue = L[i]; btnList[i].m_pLeft = NULL; btnList[i].m_pRight = NULL; } return btnList; } /*不足偶数时, 需补充节点*/ BinaryTreeNode* addMaxNode (BinaryTreeNode* list, int n) { /*最大节点*/ BinaryTreeNode* maxNode = new BinaryTreeNode(); //最大节点, 用于填充 maxNode->from = true; maxNode->m_nValue = INT_MAX; maxNode->m_pLeft = NULL; maxNode->m_pRight = NULL; /*复制数组*/ BinaryTreeNode* childNodes = new BinaryTreeNode[n+1]; //添加一个节点 for (int i=0; i<n; ++i) { childNodes[i].from = list[i].from; childNodes[i].m_nValue = list[i].m_nValue; childNodes[i].m_pLeft = list[i].m_pLeft; childNodes[i].m_pRight = list[i].m_pRight; } childNodes[n] = *maxNode; delete[] list; list = NULL; return childNodes; } /*依据左右子树大小, 创建树*/ BinaryTreeNode* buildTree (BinaryTreeNode* childNodes, int n) { if (n == 1) { return childNodes; } if (n%2 == 1) { childNodes = addMaxNode(childNodes, n); } int num = n/2 + n%2; BinaryTreeNode* btnList = new BinaryTreeNode[num]; for (int i=0; i<num; ++i) { btnList[i].m_pLeft = &childNodes[2*i]; btnList[i].m_pRight = &childNodes[2*i+1]; bool less = btnList[i].m_pLeft->m_nValue <= btnList[i].m_pRight->m_nValue; btnList[i].from = less; btnList[i].m_nValue = less ?btnList[i].m_pLeft->m_nValue : btnList[i].m_pRight->m_nValue; } buildTree(btnList, num); } /*返回树根, 又一次计算数*/ int rebuildTree (BinaryTreeNode* tree) { int result = tree[0].m_nValue; std::stack<BinaryTreeNode*> nodes; BinaryTreeNode* node = &tree[0]; nodes.push(node); while (node->m_pLeft != NULL) { node = node->from ? node->m_pLeft : node->m_pRight; nodes.push(node); } node->m_nValue = INT_MAX; nodes.pop(); while (!nodes.empty()) { node = nodes.top(); nodes.pop(); bool less = node->m_pLeft->m_nValue <= node->m_pRight->m_nValue; node->from = less; node->m_nValue = less ? node->m_pLeft->m_nValue : node->m_pRight->m_nValue; } return result; } /*从上到下打印树*/ void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = &tree[0]; std::queue<BinaryTreeNode*> temp1; std::queue<BinaryTreeNode*> temp2; temp1.push(node); while (!temp1.empty()) { node = temp1.front(); if (node->m_pLeft != NULL && node->m_pRight != NULL) { temp2.push(node->m_pLeft); temp2.push(node->m_pRight); } temp1.pop(); if (node->m_nValue == INT_MAX) { std::cout << "MAX" << " "; } else { std::cout << node->m_nValue << " "; } if (temp1.empty()) { std::cout << std::endl; temp1 = temp2; std::queue<BinaryTreeNode*> empty; std::swap(temp2, empty); } } } int main () { std::vector<int> L = {49, 38, 65, 97, 76, 13, 27, 49}; BinaryTreeNode* tree = buildTree(buildList(L), L.size()); std::cout << "Begin : " << std::endl; printTree(tree); std::cout << std::endl; std::vector<int> result; for (std::size_t i=0; i<L.size(); ++i) { int value = rebuildTree (tree); std::cout << "Round[" << i+1 << "] : " << std::endl; printTree(tree); std::cout << std::endl; result.push_back(value); } std::cout << "result : "; for (std::size_t i=0; i<L.size(); ++i) { std::cout << result[i] << " "; } std::cout << std::endl; return 0; }
输出:
Begin : 13 38 13 38 65 13 27 49 38 65 97 76 13 27 49 Round[1] : 27 38 27 38 65 76 27 49 38 65 97 76 MAX 27 49 Round[2] : 38 38 49 38 65 76 49 49 38 65 97 76 MAX MAX 49 Round[3] : 49 49 49 49 65 76 49 49 MAX 65 97 76 MAX MAX 49 Round[4] : 49 65 49 MAX 65 76 49 MAX MAX 65 97 76 MAX MAX 49 Round[5] : 65 65 76 MAX 65 76 MAX MAX MAX 65 97 76 MAX MAX MAX Round[6] : 76 97 76 MAX 97 76 MAX MAX MAX MAX 97 76 MAX MAX MAX Round[7] : 97 97 MAX MAX 97 MAX MAX MAX MAX MAX 97 MAX MAX MAX MAX Round[8] : MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX result : 13 27 38 49 49 65 76 97