• 数据结构


    树形选择排序 (tree selection sort) 具体解释 及 代码(C++)


    本文地址: http://blog.csdn.net/caroline_wendy


    算法逻辑: 依据节点的大小, 建立树, 输出树的根节点, 并把此重置为最大值, 再重构树.

    由于树中保留了一些比較的逻辑, 所以降低了比較次数.

    也称锦标赛排序, 时间复杂度为O(nlogn), 由于每一个值(共n个)须要进行树的深度(logn)次比較.

    參考<数据结构>(严蔚敏版) 第278-279页.


    树形选择排序(tree selection sort)是堆排序的一个过渡, 并非核心算法. 

    可是全然依照书上算法, 实现起来极其麻烦, 差点儿没有不论什么人实现过.

    须要记录建树的顺序, 在重构时, 才干降低比較.


    本着娱乐和分享的精神, 应人之邀, 简单的实现了一下.


    代码:

    /*
     * TreeSelectionSort.cpp
     *
     *  Created on: 2014.6.11
     *      Author: Spike
     */
    
    /*eclipse cdt,  gcc 4.8.1*/
    
    #include <iostream>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <utility>
    #include <climits>
    
    using namespace std;
    
    /*树的结构*/
    struct BinaryTreeNode{
    	bool from; //推断来源, 左true, 右false
    	int m_nValue;
    	BinaryTreeNode* m_pLeft;
    	BinaryTreeNode* m_pRight;
    };
    
    /*构建叶子节点*/
    BinaryTreeNode* buildList (const std::vector<int>& L)
    {
    	BinaryTreeNode* btnList = new BinaryTreeNode[L.size()];
    
    	for (std::size_t i=0; i<L.size(); ++i)
    	{
    		btnList[i].from = true;
    		btnList[i].m_nValue = L[i];
    		btnList[i].m_pLeft = NULL;
    		btnList[i].m_pRight = NULL;
    	}
    
    	return btnList;
    }
    
    /*不足偶数时, 需补充节点*/
    BinaryTreeNode* addMaxNode (BinaryTreeNode* list, int n)
    {
    	/*最大节点*/
    	BinaryTreeNode* maxNode = new BinaryTreeNode(); //最大节点, 用于填充
    	maxNode->from = true;
    	maxNode->m_nValue = INT_MAX;
    	maxNode->m_pLeft = NULL;
    	maxNode->m_pRight = NULL;
    
    	/*复制数组*/
    	BinaryTreeNode* childNodes = new BinaryTreeNode[n+1]; //添加一个节点
    	for (int i=0; i<n; ++i) {
    		childNodes[i].from = list[i].from;
    		childNodes[i].m_nValue = list[i].m_nValue;
    		childNodes[i].m_pLeft = list[i].m_pLeft;
    		childNodes[i].m_pRight = list[i].m_pRight;
    	}
    	childNodes[n] = *maxNode;
    	delete[] list;
    	list = NULL;
    
    	return childNodes;
    }
    
    /*依据左右子树大小, 创建树*/
    BinaryTreeNode* buildTree (BinaryTreeNode* childNodes, int n)
    {
    	if (n == 1) {
    		return childNodes;
    	}
    
    	if (n%2 == 1) {
    		childNodes = addMaxNode(childNodes, n);
    	}
    
    
    	int num = n/2 + n%2;
    	BinaryTreeNode* btnList = new BinaryTreeNode[num];
    	for (int i=0; i<num; ++i) {
    		btnList[i].m_pLeft = &childNodes[2*i];
    		btnList[i].m_pRight = &childNodes[2*i+1];
    		bool less = btnList[i].m_pLeft->m_nValue <= btnList[i].m_pRight->m_nValue;
    		btnList[i].from = less;
    		btnList[i].m_nValue = less ?

    btnList[i].m_pLeft->m_nValue : btnList[i].m_pRight->m_nValue; } buildTree(btnList, num); } /*返回树根, 又一次计算数*/ int rebuildTree (BinaryTreeNode* tree) { int result = tree[0].m_nValue; std::stack<BinaryTreeNode*> nodes; BinaryTreeNode* node = &tree[0]; nodes.push(node); while (node->m_pLeft != NULL) { node = node->from ? node->m_pLeft : node->m_pRight; nodes.push(node); } node->m_nValue = INT_MAX; nodes.pop(); while (!nodes.empty()) { node = nodes.top(); nodes.pop(); bool less = node->m_pLeft->m_nValue <= node->m_pRight->m_nValue; node->from = less; node->m_nValue = less ? node->m_pLeft->m_nValue : node->m_pRight->m_nValue; } return result; } /*从上到下打印树*/ void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = &tree[0]; std::queue<BinaryTreeNode*> temp1; std::queue<BinaryTreeNode*> temp2; temp1.push(node); while (!temp1.empty()) { node = temp1.front(); if (node->m_pLeft != NULL && node->m_pRight != NULL) { temp2.push(node->m_pLeft); temp2.push(node->m_pRight); } temp1.pop(); if (node->m_nValue == INT_MAX) { std::cout << "MAX" << " "; } else { std::cout << node->m_nValue << " "; } if (temp1.empty()) { std::cout << std::endl; temp1 = temp2; std::queue<BinaryTreeNode*> empty; std::swap(temp2, empty); } } } int main () { std::vector<int> L = {49, 38, 65, 97, 76, 13, 27, 49}; BinaryTreeNode* tree = buildTree(buildList(L), L.size()); std::cout << "Begin : " << std::endl; printTree(tree); std::cout << std::endl; std::vector<int> result; for (std::size_t i=0; i<L.size(); ++i) { int value = rebuildTree (tree); std::cout << "Round[" << i+1 << "] : " << std::endl; printTree(tree); std::cout << std::endl; result.push_back(value); } std::cout << "result : "; for (std::size_t i=0; i<L.size(); ++i) { std::cout << result[i] << " "; } std::cout << std::endl; return 0; }



    输出:

    Begin : 
    13 
    38 13 
    38 65 13 27 
    49 38 65 97 76 13 27 49 
    
    Round[1] : 
    27 
    38 27 
    38 65 76 27 
    49 38 65 97 76 MAX 27 49 
    
    Round[2] : 
    38 
    38 49 
    38 65 76 49 
    49 38 65 97 76 MAX MAX 49 
    
    Round[3] : 
    49 
    49 49 
    49 65 76 49 
    49 MAX 65 97 76 MAX MAX 49 
    
    Round[4] : 
    49 
    65 49 
    MAX 65 76 49 
    MAX MAX 65 97 76 MAX MAX 49 
    
    Round[5] : 
    65 
    65 76 
    MAX 65 76 MAX 
    MAX MAX 65 97 76 MAX MAX MAX 
    
    Round[6] : 
    76 
    97 76 
    MAX 97 76 MAX 
    MAX MAX MAX 97 76 MAX MAX MAX 
    
    Round[7] : 
    97 
    97 MAX 
    MAX 97 MAX MAX 
    MAX MAX MAX 97 MAX MAX MAX MAX 
    
    Round[8] : 
    MAX 
    MAX MAX 
    MAX MAX MAX MAX 
    MAX MAX MAX MAX MAX MAX MAX MAX 
    
    result : 13 27 38 49 49 65 76 97 
    




  • 相关阅读:
    DG Standby之REDO传输服务
    .NET缓存初探[转]
    大型门户网站架构分析[转]
    jquery.each读取json数据
    WebService简单验证:SoapHeader
    DIV上中下布局高度自适应的研究[转]
    C#随机数生成(Mersenne Twister)及最佳种子获得方法[保存]
    Yahoo给出的34条网站加速方法[转]
    Asp.net中基于Forms验证的角色验证授权[转]
    获取SWF参数传值
  • 原文地址:https://www.cnblogs.com/lytwajue/p/7048366.html
Copyright © 2020-2023  润新知