• 605B. Lazy Student(codeforces Round 335)


    B. Lazy Student
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Student Vladislav came to his programming exam completely unprepared as usual. He got a question about some strange algorithm on a graph — something that will definitely never be useful in real life. He asked a girl sitting next to him to lend him some cheat papers for this questions and found there the following definition:

    The minimum spanning tree T of graph G is such a tree that it contains all the vertices of the original graph G, and the sum of the weights of its edges is the minimum possible among all such trees.

    Vladislav drew a graph with n vertices and m edges containing no loops and multiple edges. He found one of its minimum spanning trees and then wrote for each edge its weight and whether it is included in the found tree or not. Unfortunately, the piece of paper where the graph was painted is gone and the teacher is getting very angry and demands to see the original graph. Help Vladislav come up with a graph so that the information about the minimum spanning tree remains correct.

    Input

    The first line of the input contains two integers n and m () — the number of vertices and the number of edges in the graph.

    Each of the next m lines describes an edge of the graph and consists of two integers aj and bj (1 ≤ aj ≤ 109, bj = {0, 1}). The first of these numbers is the weight of the edge and the second number is equal to 1 if this edge was included in the minimum spanning tree found by Vladislav, or 0 if it was not.

    It is guaranteed that exactly n - 1 number {bj} are equal to one and exactly m - n + 1 of them are equal to zero.

    Output

    If Vladislav has made a mistake and such graph doesn't exist, print  - 1.

    Otherwise print m lines. On the j-th line print a pair of vertices (uj, vj) (1 ≤ uj, vj ≤ n, uj ≠ vj), that should be connected by the j-th edge. The edges are numbered in the same order as in the input. The graph, determined by these edges, must be connected, contain no loops or multiple edges and its edges with bj = 1 must define the minimum spanning tree. In case there are multiple possible solutions, print any of them.

    Sample test(s)
    input
    4 5
    2 1
    3 1
    4 0
    1 1
    5 0
    
    output
    2 4
    1 4
    3 4
    3 1
    3 2
    
    input
    3 3
    1 0
    2 1
    3 1
    
    output
    -1
    


    题目大意:
        一张图,n个顶点m条边,仅仅给出它们的权重和是否是最小生成树的边,恢复原来的顶点的连接关系。

    解题思路:
        构造题,把最小生成树当成长度为n的链。且是从小到大排序的,于是后面的不是最小生成树的边的两点就仅仅能在在当前这个这个顶点的前面。注意不要有重边。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn=100000+100;
    struct node
    {
        int x,y,id,v,sign;
    }a[maxn];
    int cnt[maxn];
    bool cmp1(node x1,node y1)
    {
        if(x1.v==y1.v)
            return x1.sign>y1.sign;
        return x1.v<y1.v;
    }
    bool cmp2(node x1,node y1)
    {
        return x1.id<y1.id;
    }
    int main()
    {
        int n,m;
        while(~scanf("%d%d",&n,&m))
        {
            for(int i=0; i<m; i++)
            {
                scanf("%d%d",&a[i].v,&a[i].sign);
                a[i].id=i;
            }
            sort(a,a+m,cmp1);
            int flag=1;
            if(a[0].sign==0)
            {
                printf("-1
    ");
            }
            else
            {
                int now=2;//当前要处理的顶点
                int cur=3;//不是最小生成树加入到的顶点
                cnt[cur]=1;
                for(int i=0; i<m; i++)
                {
                    if(a[i].sign)
                    {
                        a[i].x=now;
                        a[i].y=now-1;
                        now++;
                        //cur=1;
                    }
                    else
                    {
                        if(cur<=now-1)
                        {
                            a[i].x=cur;
                            a[i].y=cnt[cur];
                           // cout<<cur<<"     "<<cnt[cur]<<endl;
                            if(cnt[cur]>=cur-2)//cur与cur+1的边是给最小生成树的
                            {
                              cur++;
                              cnt[cur]=1;
                            }
                            else
                            {
                               cnt[cur]++;
                            }
                        }
                        else
                        {
                            flag=0;
                            break;
                        }
                    }
                }
                if(flag)
                {
                    sort(a,a+m,cmp2);
                    for(int i=0; i<m; i++)
                    {
                        printf("%d %d
    ",a[i].x,a[i].y);
                    }
                }
                else
                    printf("-1
    ");
            }
    
        }
        return 0;
    }
    


  • 相关阅读:
    ios8的图标尺寸
    Xcode 6.1 正式版如何创建一个Empty Application
    xcode真机调试
    iOS基础控件
    iOS开发系列之二 – UILabel 用法小结
    (转)25个增强iOS应用程序性能的提示和技巧--初级篇
    IOS开发第三方开源库
    ios -- NSdata 与 NSString,Byte数组,UIImage 的相互转换
    4.组件的语法糖注册方式
    3.父组件和子组件
  • 原文地址:https://www.cnblogs.com/lytwajue/p/6946621.html
Copyright © 2020-2023  润新知