• 数据结构与算法复杂度分析


    一、大 O 复杂度表示法

    算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?这里有段非常简单的代码,求 1,2,3…n 的累加和。现在,来估算一下这段代码的执行时间。

    1  int cal(int n) {
    2    int sum = 0;
    3    int i = 1;
    4    for (; i <= n; ++i) {
    5      sum = sum + i;
    6    }
    7    return sum;
    8  }

    从 CPU 的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的 CPU 执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。按照这个分析思路,我们再来看这段代码。

    1  int cal(int n) {
    2    int sum = 0;
    3    int i = 1;
    4    for (; i <= n; ++i) {
    5      sum = sum + i;
    6    }
    7    return sum;
    8  }

    我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?第 2、3、4 行代码,每行都需要 1 个 unit_time 的执行时间,第 5、6 行代码循环执行了 n 遍,需要 2n * unit_time 的执行时间,第 7、8 行代码循环执行了 n2遍,所以需要 2n2* unit_time 的执行时间。所以,整段代码总的执行时间 T(n) = (2n2+2n+3)*unit_time。尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!

    T(n) = O(f(n))

    解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

    所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n2+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大 O 表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n2)。

    二、时间复杂度分析

    前面介绍了大 O 时间复杂度的由来和表示方法。现在我们来看下,如何分析一段代码的时间复杂度?

    1. 只关注循环执行次数最多的一段代码

    大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。为了便于理解,还是拿前面的例子来说明。

    1  int cal(int n) {
    2    int sum = 0;
    3    int i = 1;
    4    for (; i <= n; ++i) {
    5      sum = sum + i;
    6    }
    7    return sum;
    8  }

    其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

    2. 加法法则:总复杂度等于量级最大的那段代码的复杂度

     1 int cal(int n) {
     2    int sum_1 = 0;
     3    int p = 1;
     4    for (; p < 100; ++p) {
     5      sum_1 = sum_1 + p;
     6    }
     7 
     8    int sum_2 = 0;
     9    int q = 1;
    10    for (; q < n; ++q) {
    11      sum_2 = sum_2 + q;
    12    }
    13  
    14    int sum_3 = 0;
    15    int i = 1;
    16    int j = 1;
    17    for (; i <= n; ++i) {
    18      j = 1; 
    19      for (; j <= n; ++j) {
    20        sum_3 = sum_3 +  i * j;
    21      }
    22    }
    23  
    24    return sum_1 + sum_2 + sum_3;
    25  }

    这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。这里再强调一下,即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n2)。综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

    3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

     1 int cal(int n) {
     2    int ret = 0; 
     3    int i = 1;
     4    for (; i < n; ++i) {
     5      ret = ret + f(i);
     6    } 
     7  } 
     8  
     9  int f(int n) {
    10   int sum = 0;
    11   int i = 1;
    12   for (; i < n; ++i) {
    13     sum = sum + i;
    14   } 
    15   return sum;
    16  }

    我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。

    4、几种常见时间复杂度实例分析

     4.1. O(1)

    首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。

     int i = 8;
     int j = 6;
     int sum = i + j;

    只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

    4.2. O(logn)、O(nlogn)

    对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。通过一个例子来说明一下。

    1  i=1;
    2  while (i <= n)  {
    3    i = i * 2;
    4  }

    根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

    所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

    现在把上面的代码改造一下

     i=1;
     while (i <= n)  {
       i = i * 3;
     }

    很简单就能看出来,这段代码的时间复杂度为 O(log3n)。实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。为什么呢?我们知道,对数之间是可以互相转换的,log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于 O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

    同理,如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

    4.3. O(m+n)、O(m*n)

    再来看一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。老规矩,先看代码!

     1 int cal(int m, int n) {
     2   int sum_1 = 0;
     3   int i = 1;
     4   for (; i < m; ++i) {
     5     sum_1 = sum_1 + i;
     6   }
     7 
     8   int sum_2 = 0;
     9   int j = 1;
    10   for (; j < n; ++j) {
    11     sum_2 = sum_2 + j;
    12   }
    13 
    14   return sum_1 + sum_2;
    15 }

    从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

    三、空间复杂度分析

    时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

    void print(int n) {
      int i = 0;
      int[] a = new int[n];
      for (i; i <n; ++i) {
        a[i] = i * i;
      }
    
      for (i = n-1; i >= 0; --i) {
        print out a[i]
      }
    }

    跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。我们常见的空间复杂度就是 O(1)、O(n)、O(n2),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

    小结:

    复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2)。

     

    不积跬步无以至千里
  • 相关阅读:
    64位windows 7下配置TortoiseGit(转)
    linux中fork函数详解(转)
    Socket通信的Python实现
    Socket
    浅谈CSRF攻击方式(转)
    Burpsuite常用模块详解以及渗透测试上的运用
    大佬内网渗透技巧的独白(思路篇)
    CTFcrackTools-V3
    厂商要知道的漏洞防护措施
    如何运用kali-xplico网络取证分析?点开看看吧
  • 原文地址:https://www.cnblogs.com/lyt0207/p/12652351.html
Copyright © 2020-2023  润新知